Do you want to publish a course? Click here

Microwave spectroscopy of radio-frequency dressed $^{87}$Rb

64   0   0.0 ( 0 )
 Added by B. M. Garraway
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the hyperfine spectrum of atoms of $^{87}$Rb dressed by a radio-frequency field, and present experimental results in three different situations: freely falling atoms, atoms trapped in an optical dipole trap and atoms in an adiabatic radio-frequency dressed shell trap. In all cases, we observe several resonant side bands spaced (in frequency) at intervals equal to the dressing frequency, corresponding to transitions enabled by the dressing field. We theoretically explain the main features of the microwave spectrum, using a semi-classical model in the low field limit and the Rotating Wave Approximation for alkali-like species in general and $^{87}$Rb atoms in particular. As a proof of concept, we demonstrate how the spectral signal of a dressed atomic ensemble enables an accurate determination of the dressing configuration and the probing microwave field.



rate research

Read More

161 - J. C. Hill , W. Huie , P. Lunia 2020
We demonstrate photoassociation (PA) of ultracold fermionic $^{87}$Sr atoms. The binding energies of a series of molecular states on the $^1Sigma^+_u$ $5s^2,^1$S$_0+5s5p,^1$P$_1$ molecular potential are fit with the semiclassical LeRoy-Bernstein model, and PA resonance strengths are compared to predictions based on the known $^1$S$_0+^1$S$_0$ ground state potential. Similar measurements and analysis were performed for the bosonic isotopes $^{84}$Sr and $^{86}$Sr, allowing a combined analysis of the long-range portion of the excited-state potential and determination of the $5s5p,^1$P$_1$ atomic state lifetime of $5.20 pm 0.02$ ns. The results enable prediction of PA rates across a wide range of experimental conditions.
We report the measurement of the anisotropic AC polarizability of ultracold polar $^{40}$K$^{87}$Rb molecules in the ground and first rotationally excited states. Theoretical analysis of the polarizability agrees well with experimental findings. Although the polarizability can vary by more than 30%, a magic angle between the laser polarization and the quantization axis is found where the polarizability of the $|N=0,m_N=0>$ and the $|N=1,m_N=0>$ states match. At this angle, rotational decoherence due to the mismatch in trapping potentials is eliminated, and we observe a sharp increase in the coherence time. This paves the way for precise spectroscopic measurements and coherent manipulations of rotational states as a tool in the creation and probing of novel quantum many-body states of polar molecules.
We report the binding energy of $^{87}$Rb$^{133}$Cs molecules in their rovibrational ground state measured using an offset-free optical frequency comb based on difference frequency generation technology. We create molecules in the absolute ground state using stimulated Raman adiabatic passage (STIRAP) with a transfer efficiency of 88%. By measuring the absolute frequencies of our STIRAP lasers, we find the energy-level difference from an initial weakly-bound Feshbach state to the rovibrational ground state with a resolution of 5 kHz over an energy-level difference of more than 114 THz; this lets us discern the hyperfine splitting of the ground state. Combined with theoretical models of the Feshbach state binding energies and ground-state hyperfine structure, we determine a zero-field binding energy of $htimes114,268,135,237(5)(50)$ kHz. To our knowledge, this is the most accurate determination to date of the dissociation energy of a molecule.
We report the formation of a dual-species Bose-Einstein condensate of $^{87}$Rb and $^{133}$Cs in the same trapping potential. Our method exploits the efficient sympathetic cooling of $^{133}$Cs via elastic collisions with $^{87}$Rb, initially in a magnetic quadrupole trap and subsequently in a levitated optical trap. The two condensates each contain up to $2times10^{4}$ atoms and exhibit a striking phase separation, revealing the mixture to be immiscible due to strong repulsive interspecies interactions. Sacrificing all the $^{87}$Rb during the cooling, we create single species $^{133}$Cs condensates of up to $6times10^{4}$ atoms.
171 - C Schubert , J Hartwig , H Ahlers 2013
In this paper we discuss in detail an experimental scheme to test the universality of free fall (UFF) with a differential $^{87}$Rb / $^{85}$Rb atom interferometer applicable for extended free fall of several seconds in the frame of the STE-QUEST mission. This analysis focuses on suppression of noise and error sources which would limit the accuracy of a violation measurement. We show that the choice of atomic species and the correctly matched parameters of the interferometer sequence are of utmost importance to suppress leading order phase shifts. In conclusion we will show the expected performance of $2$ parts in $10^{15}$ of such an interferometer for a test of the UFF.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا