Experimental evidence of a hydrodynamic soliton gas


Abstract in English

We report on an experimental realization of a bi-directional soliton gas in a 34~m-long wave flume in shallow water regime. We take advantage of the fission of a sinusoidal wave to inject continuously solitons that propagate along the tank, back and forth. Despite the unavoidable damping, solitons retain adiabatically their profile, while decaying. The outcome is the formation of a stationary state characterized by a dense soliton gas whose statistical properties are well described by a pure integrable dynamics. The basic ingredient in the gas, i.e. the two-soliton interaction, is studied in details and compared favourably with the analytical solutions of the Kaup-Boussinesq integrable equation. High resolution space-time measurements of the surface elevation in the wave flume provide a unique tool for studying experimentally the whole spectrum of excitations.

Download