Do you want to publish a course? Click here

Detecting quantum critical points in the $t-t$ Fermi-Hubbard model via complex network theory

521   0   0.0 ( 0 )
 Added by Andrey Bagrov
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

A considerable success in phenomenological description of high-T$_{rm c}$ superconductors has been achieved within the paradigm of Quantum Critical Point (QCP) - a parental state of a variety of exotic phases that is characterized by dense entanglement and absence of well-defined quasiparticles. However, the microscopic origin of the critical regime in real materials remains an open question. On the other hand, there is a popular view that a single-band $t-t$ Hubbard model is the minimal model to catch the main relevant physics of superconducting compounds. Here, we suggest that emergence of the QCP is tightly connected with entanglement in real space and identify its location on the phase diagram of the hole-doped $t-t$ Hubbard model. To detect the QCP we study a weighted graph of inter-site quantum mutual information within a four-by-four plaquette that is solved by exact diagonalization. We demonstrate that some quantitative characteristics of such a graph, viewed as a complex network, exhibit peculiar behavior around a certain submanifold in the parametric space of the model. This method allows us to overcome difficulties caused by finite size effects and to identify the transition point even on a small lattice, where long-range asymptotics of correlation functions cannot be accessed.



rate research

Read More

184 - P. A. Frigeri , C. Honerkamp , 2002
We calculate the Landau interaction function f(k,k) for the two-dimensional t-t Hubbard model on the square lattice using second and higher order perturbation theory. Within the Landau-Fermi liquid framework we discuss the behavior of spin and charge susceptibilities as function of the onsite interaction and band filling. In particular we analyze the role of elastic umklapp processes as driving force for the anisotropic reduction of the compressibility on parts of the Fermi surface.
Spontaneous phase separation instabilities with the formation of various types of charge and spin pairing (pseudo)gaps in $U>0$ Hubbard model including the {it next nearest neighbor coupling} are calculated with the emphasis on the two-dimensional (square) lattices generated by 8- and 10-site Betts unit cells. The exact theory yields insights into the nature of quantum critical points, continuous transitions, dramatic phase separation instabilities and electron condensation in spatially inhomogeneous systems. The picture of coupled anti-parallel (singlet) spins and paired charged holes suggests full Bose condensation and coherent pairing in real space at zero temperature of electrons complied with the Bose-Einstein statistics. Separate pairing of charge and spin degrees at distinct condensation temperatures offers a new route to superconductivity different from the BCS scenario. The conditions for spin liquid behavior coexisting with unsaturated and saturated Nagaoka ferromagnetism due to spin-charge separation are established. The phase separation critical points and classical criticality found at zero and finite temperatures resemble a number of inhomogeneous, coherent and incoherent nanoscale phases seen near optimally doped high-$T_c$ cuprates, pnictides and CMR nanomaterials.
The importance of models with an exact solution for the study of materials with non-trivial topological properties has been extensively demonstrated. Among these, the Kitaev model of a one-dimensional $p$-wave superconductor plays a guiding role in the search for Majorana modes in condensed matter systems. Also, the $sp$ chain, with an anti-symmetric mixing among the $s$ and $p$ bands provides a paradigmatic example of a topological insulator with well understood properties. There is an intimate relation between these two models and in particular their topological quantum phase transitions share the same universality class. Here we consider a two-band $sp$ model of spinless fermions with an attractive (inter-band) interaction. Both the interaction and hybridization between the $s$ and $p$ fermions are anti-symmetric. The zero temperature phase diagram of the model presents a variety of phases including a Weyl superconductor, topological insulator and trivial phases. The quantum phase transitions between these phases can be either continuous or discontinuous. We show that the transition from the topological superconducting phase to the trivial one has critical exponents different from those of an equivalent transition in Kitaevs model.
We present a systematic study of the phase diagram of the $t{-}t^prime{-}J$ model by using the Greens function Monte Carlo (GFMC) technique, implemented within the fixed-node (FN) approximation and a wave function that contains both antiferromagnetic and d-wave pairing. This enables us to study the interplay between these two kinds of order and compare the GFMC results with the ones obtained by the simple variational approach. By using a generalization of the forward-walking technique, we are able to calculate true FN ground-state expectation values of the pair-pair correlation functions. In the case of $t^prime=0$, there is a large region with a coexistence of superconductivity and antiferromagnetism, that survives up to $delta_c sim 0.10$ for $J/t=0.2$ and $delta_c sim 0.13$ for $J/t=0.4$. The presence of a finite $t^prime/t<0$ induces a strong suppression of both magnetic (with $delta_c lesssim 0.03$, for $J/t=0.2$ and $t^prime/t=-0.2$) and pairing correlations. In particular, the latter ones are depressed both in the low-doping regime and around $delta sim 0.25$, where strong size effects are present.
We present numeric results for ground state and angle resolved photoemission spectra (ARPES) for single hole in t-J model coupled to optical phonons. The systematic-error free diagrammatic Monte Carlo is employed where the Feynman graphs for the Matsubara Green function in imaginary time are summed up completely with respect to phonons variables, while magnetic variables are subjected to non-crossing approximation. We obtain that at electron-phonon coupling constants relevant for high Tc cuprates the polaron undergoes self-trapping crossover to strong coupling limit and theoretical ARPES demonstrate features observed in experiment: a broad peak in the bottom of the spectra has momentum dependence which coincides with that of hole in pure t-J model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا