Do you want to publish a course? Click here

Stealth acoustic materials

100   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the experimental design of a 1D stealth acoustic material, namely a material that suppresses the acoustic scattering for a given set of incident wave vectors. The material consists of multiple scatterers, rigid diaphragms, located in an air-filled acoustic waveguide. The position of the scatterers has been chosen such that in the Born approximation a suppression of the scattering for a broad range of frequencies is achieved and thus a broadband transparency. Experimental results are found in excellent agreement with the theory despite the presence of losses and the finite size of the material, features that are not captured in the theory. This robustness as well as the generality of the results motivates realistic potential applications for the design of transparent materials in acoustics and other fields of wave physics.



rate research

Read More

We report a procedure to design 2-dimensional acoustic structures with prescribed scattering properties. The structures are designed from targeted properties in the reciprocal space so that their structure factors, i.e., their scattering patterns under the Born approximation, exactly follow the desired scattering properties for a set of wavelengths. The structures are made of a distribution of rigid circular cross-sectional cylinders embedded in air. We demonstrate the efficiency of the procedure by designing 2-dimensional stealth acoustic materials with broadband backscattering suppression independent of the angle of incidence and equiluminous acoustic materials exhibiting broadband scattering of equal intensity also independent of the angle of incidence. The scattering intensities are described in terms of both single and multiple scattering formalisms, showing excellent agreement with each other, thus validating the scattering properties of each material.
Thermal stealth and camouflage have been intensively studied for blending objects with their surroundings against remote thermal image detection. Adaptive control of infrared emissivity has been explored extensively as a promising way of thermal stealth, but it still requires an additional feedback control. Passive modulation of emissivity, however, has been remained as a great challenge which requires a precise engineering of emissivity over wide temperature range. Here, we report a drastic improvement of passive camouflage thin films capable of concealing thermal objects at near room temperature without any feedback control, which consists of a vanadium dioxide (VO2) layer with gradient tungsten (W) concentration. The gradient W-doping widens the metal-insulator transition width, accomplishing self-adaptive thermal stealth with a smooth change of emissivity. Our simple approach, applicable to other similar thermal camouflage materials for improving their passive cloaking, will find wide applications, such as passive thermal camouflage, urban energy-saving smart windows, and improved infrared sensors.
Despite mounting evidence that materials imperfections are a major obstacle to practical applications of superconducting qubits, connections between microscopic material properties and qubit coherence are poorly understood. Here, we perform measurements of transmon qubit relaxation times $T_1$ in parallel with spectroscopy and microscopy of the thin polycrystalline niobium films used in qubit fabrication. By comparing results for films deposited using three techniques, we reveal correlations between $T_1$ and grain size, enhanced oxygen diffusion along grain boundaries, and the concentration of suboxides near the surface. Physical mechanisms connect these microscopic properties to residual surface resistance and $T_1$ through losses arising from the grain boundaries and from defects in the suboxides. Further, experiments show that the residual resistance ratio can be used as a figure of merit for qubit lifetime. This comprehensive approach to understanding qubit decoherence charts a pathway for materials-driven improvements of superconducting qubit performance.
This study explores the potentialities of Scanning Thermal Microscopy (SThM) technique as a tool for measuring thermal transporting properties of carbon-derived materials issued from thermal conversion of organic polymers, such as the most commonly known polyimide (PI), Kapton. For quantitative measurements, the Null Point SThM (NP-SThM) technique is used in order to avoid unwanted effects as the parasitic heat flows through the air and the probe cantilever. Kapton HN films were pyrolysed in an inert atmosphere at temperatures up to 1200{deg}C to produce carbon-based residues with varying degree of conversion to free sp2 disordered carbon. The thermal conductivity of carbon materials ranges from 0.2 to 2 Wm-1K-1 depending on the temperature of the carbonization process (varied between 500{deg}C and 1200{deg}C). In order to validate the applicability of NP-SThM approach to these materials, the results were compared to those obtained with the three more traditional techniques, namely photo-thermal radiometry, flash laser analysis and micro-Raman thermometry. It was found that NP SThM data are in excellent agreement with previous work using more traditional techniques. We used the NP-SThM technique to differentiate structural heterogeneities or imperfections at the surface of the pyrolysed Kapton on the basis of measured local thermal conductivity.
Acoustic negative-index metamaterials show promise in achieving superlensing for diagnostic medical imaging. In spite of the recent progress made in this field, most metamaterials suffer from deficiencies such as low spatial symmetry, sophisticated labyrinth topologies and narrow-band features, which make them difficult to be utilized for symmetric subwavelength imaging applications. Here, we propose a category of robust multi-cavity metamaterials and reveal their common double-negative mechanism enabled by multi-polar (dipole, quadrupole and octupole) resonances in both two-dimensional (2D) and three-dimensional (3D) scenarios. In particular, we discover explicit relationships governing the double-negative frequency bounds from equivalent circuit analogy. Moreover, broadband single-source and double-source subwavelength imaging is realized and verified by 2D and 3D superlens. More importantly, the analogical 3D superlens can ensure the subwavelength imaging in all directions. The proposed multi-polar resonance-enabled robust metamaterials and design methodology open horizons for easier manipulation of subwavelength waves and realization of practical 3D metamaterial devices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا