Nanospot Angle-Resolved Photoemission Study of Bernal-Stacked Bilayer Graphene on Hexagonal Boron Nitride: Band Structure and Local Variation of Lattice Alignment


Abstract in English

Hexagonal boron nitride (hBN) is the supporting substrate of choice for two-dimensional material devices because it is atomically flat and chemically inert. However, due to the small size of mechanically exfoliated hBN flakes, electronic structure studies of 2D materials supported by hBN using angle-resolved photoemission spectroscopy (ARPES) are challenging. Here we investigate the electronic band structure of a Bernal-stacked bilayer graphene sheet on a hexagonal boron nitride (BLG/hBN) flake using nanospot ARPES (nanoARPES). By fitting high-resolution energy vs. momentum electronic band spectra, we extract the tight-binding parameters for BLG on hBN. In addition, we reveal spatial variations of the alignment angle between BLG and hBN lattices via inhomogeneity of the electronic bands near the Fermi level. We confirmed these findings by scanning tunneling microscopy measurements obtained on the same device. Our results from spatially resolved nanoARPES measurements of BLG/hBN heterostructures are instrumental for understanding experiments that utilize spatially averaging techniques such as electronic transport and optical spectroscopy.

Download