Do you want to publish a course? Click here

A CNN-RNN Architecture for Multi-Label Weather Recognition

122   0   0.0 ( 0 )
 Added by Bin Zhao
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Weather Recognition plays an important role in our daily lives and many computer vision applications. However, recognizing the weather conditions from a single image remains challenging and has not been studied thoroughly. Generally, most previous works treat weather recognition as a single-label classification task, namely, determining whether an image belongs to a specific weather class or not. This treatment is not always appropriate, since more than one weather conditions may appear simultaneously in a single image. To address this problem, we make the first attempt to view weather recognition as a multi-label classification task, i.e., assigning an image more than one labels according to the displayed weather conditions. Specifically, a CNN-RNN based multi-label classification approach is proposed in this paper. The convolutional neural network (CNN) is extended with a channel-wise attention model to extract the most correlated visual features. The Recurrent Neural Network (RNN) further processes the features and excavates the dependencies among weather classes. Finally, the weather labels are predicted step by step. Besides, we construct two datasets for the weather recognition task and explore the relationships among different weather conditions. Experimental results demonstrate the superiority and effectiveness of the proposed approach. The new constructed datasets will be available at https://github.com/wzgwzg/Multi-Label-Weather-Recognition.



rate research

Read More

Convolutional Neural Network (CNN) has demonstrated promising performance in single-label image classification tasks. However, how CNN best copes with multi-label images still remains an open problem, mainly due to the complex underlying object layouts and insufficient multi-label training images. In this work, we propose a flexible deep CNN infrastructure, called Hypotheses-CNN-Pooling (HCP), where an arbitrary number of object segment hypotheses are taken as the inputs, then a shared CNN is connected with each hypothesis, and finally the CNN output results from different hypotheses are aggregated with max pooling to produce the ultimate multi-label predictions. Some unique characteristics of this flexible deep CNN infrastructure include: 1) no ground truth bounding box information is required for training; 2) the whole HCP infrastructure is robust to possibly noisy and/or redundant hypotheses; 3) no explicit hypothesis label is required; 4) the shared CNN may be well pre-trained with a large-scale single-label image dataset, e.g. ImageNet; and 5) it may naturally output multi-label prediction results. Experimental results on Pascal VOC2007 and VOC2012 multi-label image datasets well demonstrate the superiority of the proposed HCP infrastructure over other state-of-the-arts. In particular, the mAP reaches 84.2% by HCP only and 90.3% after the fusion with our complementary result in [47] based on hand-crafted features on the VOC2012 dataset, which significantly outperforms the state-of-the-arts with a large margin of more than 7%.
Facial Attribute Classification (FAC) has attracted increasing attention in computer vision and pattern recognition. However, state-of-the-art FAC methods perform face detection/alignment and FAC independently. The inherent dependencies between these tasks are not fully exploited. In addition, most methods predict all facial attributes using the same CNN network architecture, which ignores the different learning complexities of facial attributes. To address the above problems, we propose a novel deep multi-task multi-label CNN, termed DMM-CNN, for effective FAC. Specifically, DMM-CNN jointly optimizes two closely-related tasks (i.e., facial landmark detection and FAC) to improve the performance of FAC by taking advantage of multi-task learning. To deal with the diverse learning complexities of facial attributes, we divide the attributes into two groups: objective attributes and subjective attributes. Two different network architectures are respectively designed to extract features for two groups of attributes, and a novel dynamic weighting scheme is proposed to automatically assign the loss weight to each facial attribute during training. Furthermore, an adaptive thresholding strategy is developed to effectively alleviate the problem of class imbalance for multi-label learning. Experimental results on the challenging CelebA and LFWA datasets show the superiority of the proposed DMM-CNN method compared with several state-of-the-art FAC methods.
Surgical phase recognition is of particular interest to computer assisted surgery systems, in which the goal is to predict what phase is occurring at each frame for a surgery video. Networks with multi-stage architecture have been widely applied in many computer vision tasks with rich patterns, where a predictor stage first outputs initial predictions and an additional refinement stage operates on the initial predictions to perform further refinement. Existing works show that surgical video contents are well ordered and contain rich temporal patterns, making the multi-stage architecture well suited for the surgical phase recognition task. However, we observe that when simply applying the multi-stage architecture to the surgical phase recognition task, the end-to-end training manner will make the refinement ability fall short of its wishes. To address the problem, we propose a new non end-to-end training strategy and explore different designs of multi-stage architecture for surgical phase recognition task. For the non end-to-end training strategy, the refinement stage is trained separately with proposed two types of disturbed sequences. Meanwhile, we evaluate three different choices of refinement models to show that our analysis and solution are robust to the choices of specific multi-stage models. We conduct experiments on two public benchmarks, the M2CAI16 Workflow Challenge, and the Cholec80 dataset. Results show that multi-stage architecture trained with our strategy largely boosts the performance of the current state-of-the-art single-stage model. Code is available at url{https://github.com/ChinaYi/casual_tcn}.
Dynamic inference is a feasible way to reduce the computational cost of convolutional neural network(CNN), which can dynamically adjust the computation for each input sample. One of the ways to achieve dynamic inference is to use multi-stage neural network, which contains a sub-network with prediction layer at each stage. The inference of a input sample can exit from early stage if the prediction of the stage is confident enough. However, design a multi-stage CNN architecture is a non-trivial task. In this paper, we introduce a general framework, ENAS4D, which can efficiently search for optimal multi-stage CNN architecture for dynamic inference in a well-designed search space. Firstly, we propose a method to construct the search space with multi-stage convolution. The search space include different numbers of layers, different kernel sizes and different numbers of channels for each stage and the resolution of input samples. Then, we train a once-for-all network that supports to sample diverse multi-stage CNN architecture. A specialized multi-stage network can be obtained from the once-for-all network without additional training. Finally, we devise a method to efficiently search for the optimal multi-stage network that trades the accuracy off the computational cost taking the advantage of once-for-all network. The experiments on the ImageNet classification task demonstrate that the multi-stage CNNs searched by ENAS4D consistently outperform the state-of-the-art method for dyanmic inference. In particular, the network achieves 74.4% ImageNet top-1 accuracy under 185M average MACs.
Convolutional neural networks (CNNs) have shown great performance as general feature representations for object recognition applications. However, for multi-label images that contain multiple objects from different categories, scales and locations, global CNN features are not optimal. In this paper, we incorporate local information to enhance the feature discriminative power. In particular, we first extract object proposals from each image. With each image treated as a bag and object proposals extracted from it treated as instances, we transform the multi-label recognition problem into a multi-class multi-instance learning problem. Then, in addition to extracting the typical CNN feature representation from each proposal, we propose to make use of ground-truth bounding box annotations (strong labels) to add another level of local information by using nearest-neighbor relationships of local regions to form a multi-view pipeline. The proposed multi-view multi-instance framework utilizes both weak and strong labels effectively, and more importantly it has the generalization ability to even boost the performance of unseen categories by partial strong labels from other categories. Our framework is extensively compared with state-of-the-art hand-crafted feature based methods and CNN based methods on two multi-label benchmark datasets. The experimental results validate the discriminative power and the generalization ability of the proposed framework. With strong labels, our framework is able to achieve state-of-the-art results in both datasets.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا