Do you want to publish a course? Click here

Stainless steel tank production and tests for the JSNS$^2$ neutrino detector

95   0   0.0 ( 0 )
 Added by Yota Hino
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

This paper describes the design and the construction of the stainless steel tank of the JSNS$^2$ detector. The leakage was examined using water and gas after the construction. The new sealing technique with liquid gasket was developed, and its sealing capability was evaluated quantitatively. The result shows over 5 times better value than the tolerance level of leakage.The acceleration measurement during the transportation of the tank shows adequate robustness.These tests prove that the stainless steel tank is feasible to use the real experiment.



rate research

Read More

The JSNS^2 (J-PARC Sterile Neutrino Search at J-PARC Spallation Neutron Source) experiment aims to search for oscillations involving a sterile neutrino in the eV^2 mass-splitting range. The experiment will search for the appearance of electron antineutrinos oscillated from muon antineutrinos. The electron antineutrinos are detected via the inverse beta decay process using a liquid scintillator detector. A 1MW beam of 3 GeV protons incident on a spallation neutron target produces an intense and pulsed neutrino source from pion, muon, and kaon decay at rest. The JSNS^2 detector is located 24 m away from the neutrino source and began operation from June 2020. The detector contains 17 tonnes of gadolinium (Gd) loaded liquid scintillator (LS) in an acrylic vessel, as a neutrino target. It is surrounded by 31 tonnes of unloaded LS in a stainless steel tank. Optical photons produced in LS are viewed by 120 R7081 Hamamatsu 10-inch Photomultiplier Tubes (PMTs). In this paper, we describe the JSNS^2 detector design, construction, and operation.
The antineutrino detectors in the Daya Bay reactor neutrino experiment are liquid scintillator detectors designed to detect low energy particles from antineutrino interactions with high efficiency and low backgrounds. Since the antineutrino detector will be installed in a water Cherenkov cosmic ray veto detector and will run for 3 to 5 years, ensuring water tightness is critical to the successful operation of the antineutrino detectors. We choose a special method to seal the detector. Three leak checking methods have been employed to ensure the seal quality. This paper will describe the sealing method and leak testing results.
To ensure compliance with the experimental requirement for ultra-low background, in this study the radioactivity of stainless steels manufactured by smelting is thoroughly investigated. Raw materials, stage samples, and commercial samples are investigated by glow discharge mass spectrometry (GDMS) and/or with high-purity germanium detectors (HPGe) at both the ground level and/or the China Jinping Underground Laboratory. Custom-made stainless steel samples are found to have radioactivity levels comparable to those in other low-background experiments. The comprehensive results regarding the radioactivity level in materials to be used in the proposed Jinping Neutrino Experiment are reported.
68 - J. S. Park , S. Y. Kim , C. Rott 2019
The JSNS$^{2}$ (J-PARC Sterile Neutrino Search at J-PARC Spallation Neutron Source) experiment will search for neutrino oscillations over a 24 m short baseline at J-PARC. The JSNS$^{2}$ inner detector will be filled with 17 tons of gadolinium-loaded liquid scintillator (LS) with an additional 31 tons of unloaded LS in the intermediate $gamma$-catcher and outer veto volumes. JSNS$^{2}$ has chosen Linear Alkyl Benzene (LAB) as an organic solvent because of its chemical properties. The unloaded LS was produced at a refurbished facility, originally used for scintillator production by the RENO experiment. JSNS$^{2}$ plans to use ISO tanks for the storage and transportation of the LS. In this paper, we describe the LS production, and present measurements of its optical properties and long term stability. Our measurements show that storing the LS in ISO tanks does not result in degradation of its optical properties.
88 - S.L. Mufson 2020
This investigation presents a new experimental determination of the reflectivity of 128 nm scintillation photons off stainless steel. The experiment took place in the TallBo dewar facility at Fermilab. The data were obtained using a detector that is sensitive to photons falling on its front face but is insensitive to photons falling on its back face or its sides. By comparing the ratio of photons per track from tracks that illuminate the front face of the detector to those that cross the back side with a simulation of the experiment where the reflectivity can be varied, a value of the reflectivity was determined. The reflectivity for the SA-240-304L stainless steel alloy off which the scintillation photons reflect in the TallBo dewar as found by this experiment is R = 0.674 +/- 0.038. The experiment is not sensitive to the differences between specular and diffuse reflections.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا