Do you want to publish a course? Click here

General Framework for Metric Optimization Problems with Delay or with Deadlines

68   0   0.0 ( 0 )
 Added by Noam Touitou
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

In this paper, we present a framework used to construct and analyze algorithms for online optimization problems with deadlines or with delay over a metric space. Using this framework, we present algorithms for several different problems. We present an $O(D^{2})$-competitive deterministic algorithm for online multilevel aggregation with delay on a tree of depth $D$, an exponential improvement over the $O(D^{4}2^{D})$-competitive algorithm of Bienkowski et al. (ESA 16), where the only previously-known improvement was for the special case of deadlines by Buchbinder et al. (SODA 17). We also present an $O(log^{2}n)$-competitive randomized algorithm for online service with delay over any general metric space of $n$ points, improving upon the $O(log^{4}n)$-competitive algorithm by Azar et al. (STOC 17). In addition, we present the problem of online facility location with deadlines. In this problem, requests arrive over time in a metric space, and need to be served until their deadlines by facilities that are opened momentarily for some cost. We also consider the problem of facility location with delay, in which the deadlines are replaced with arbitrary delay functions. For those problems, we present $O(log^{2}n)$-competitive algorithms, with $n$ the number of points in the metric space. The algorithmic framework we present includes techniques for the design of algorithms as well as techniques for their analysis.



rate research

Read More

70 - Yossi Azar , Noam Touitou 2020
We consider network design problems with deadline or delay. All previous results for these models are based on randomized embedding of the graph into a tree (HST) and then solving the problem on this tree. We show that this is not necessary. In particular, we design a deterministic framework for these problems which is not based on embedding. This enables us to provide deterministic $text{poly-log}(n)$-competitive algorithms for Steiner tree, generalized Steiner tree, node weighted Steiner tree, (non-uniform) facility location and directed Steiner tree with deadlines or with delay (where $n$ is the number of nodes). Our deterministic algorithms also give improved guarantees over some previous randomized results. In addition, we show a lower bound of $text{poly-log}(n)$ for some of these problems, which implies that our framework is optimal up to the power of the poly-log. Our algorithms and techniques differ significantly from those in all previous considerations of these problems.
In this paper we present an algorithmic framework for solving a class of combinatorial optimization problems on graphs with bounded pathwidth. The problems are NP-hard in general, but solvable in linear time on this type of graphs. The problems are relevant for assessing network reliability and improving the networks performance and fault tolerance. The main technique considered in this paper is dynamic programming.
We study the problem of matching agents who arrive at a marketplace over time and leave after d time periods. Agents can only be matched while they are present in the marketplace. Each pair of agents can yield a different match value, and the planners goal is to maximize the total value over a finite time horizon. First we study the case in which vertices arrive in an adversarial order. We provide a randomized 0.25-competitive algorithm building on a result by Feldman et al. (2009) and Lehman et al. (2006). We extend the model to the case in which departure times are drawn independently from a distribution with non-decreasing hazard rate, for which we establish a 1/8-competitive algorithm. When the arrival order is chosen uniformly at random, we show that a batching algorithm, which computes a maximum-weighted matching every (d+1) periods, is 0.279-competitive.
Many discrete optimization problems amount to select a feasible subgraph of least weight. We consider in this paper the context of spatial graphs where the positions of the vertices are uncertain and belong to known uncertainty sets. The objective is to minimize the sum of the distances in the chosen subgraph for the worst positions of the vertices in their uncertainty sets. We first prove that these problems are NP-hard even when the feasible subgraphs consist either of all spanning trees or of all s-t paths. In view of this, we propose en exact solution algorithm combining integer programming formulations with a cutting plane algorithm, identifying the cases where the separation problem can be solved efficiently. We also propose two types of polynomial-time approximation algorithms. The first one relies on solving a nominal counterpart of the problem considering pairwise worst-case distances. We study in details the resulting approximation ratio, which depends on the structure of the metric space and of the feasible subgraphs. The second algorithm considers the special case of s-t paths and leads to a fully-polynomial time approximation scheme. Our algorithms are numerically illustrated on a subway network design problem and a facility location problem.
In computer science, there exist a large number of optimization problems defined on graphs, that is to find a best node state configuration or a network structure such that the designed objective function is optimized under some constraints. However, these problems are notorious for their hardness to solve because most of them are NP-hard or NP-complete. Although traditional general methods such as simulated annealing (SA), genetic algorithms (GA) and so forth have been devised to these hard problems, their accuracy and time consumption are not satisfying in practice. In this work, we proposed a simple, fast, and general algorithm framework based on advanced automatic differentiation technique empowered by deep learning frameworks. By introducing Gumbel-softmax technique, we can optimize the objective function directly by gradient descent algorithm regardless of the discrete nature of variables. We also introduce evolution strategy to parallel version of our algorithm. We test our algorithm on three representative optimization problems on graph including modularity optimization from network science, Sherrington-Kirkpatrick (SK) model from statistical physics, maximum independent set (MIS) and minimum vertex cover (MVC) problem from combinatorial optimization on graph. High-quality solutions can be obtained with much less time consuming compared to traditional approaches.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا