Do you want to publish a course? Click here

Quantum remote sensing of angular rotation of structured objects

72   0   0.0 ( 0 )
 Added by Wuhong Zhang
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Based on two-photon entanglement, quantum remote sensing enables the measurement and detection to be done non-locally and remotely. However, little attention has been paid to implement a noncontact way to sense a real objects angular rotation, which is a key step towards the practical applications of precise measurements with entangled twisted photons. Here, we use photon pairs entangled in orbital angular momentum (OAM) to show that a real objects angular rotation can be measured non-locally. Our experiment reveals that the angular sensitivity of the object encoded with idler photons is proportional to the measured OAM values of signal photons. It suggests potential applications in developing a noncontact way for angle remote sensing of an object with customized measurement resolution. Moreover, this feature may provide potential application in sensing of some light-sensitive specimens when the entangled photon pairs, which have significantly different wavelengths, are used, such as one photon is infrared but the other one is visible.



rate research

Read More

The rotational Doppler effect associated with lights orbital angular momentum (OAM) has been found as a powerful tool to detect rotating bodies. However, this method was only demonstrated experimentally on the laboratory scale under well controlled conditions so far. And its real potential lies at the practical applications in the field of remote sensing. We have established a 120-meter long free-space link between the rooftops of two buildings and show that both the rotation speed and the rotational symmetry of objects can be identified from the detected rotational Doppler frequency shift signal at photon count level. Effects of possible slight misalignments and atmospheric turbulences are quantitatively analyzed in terms of mode power spreading to the adjacent modes as well as the transfer of rotational frequency shifts. Moreover, our results demonstrate that with the preknowledge of the objects rotational symmetry one may always deduce the rotation speed no matter how strong the coupling to neighboring modes is. Without any information of the rotating object, the deduction of the objects symmetry and rotational speed may still be obtained as long as the mode spreading efficiency does not exceed 50 %. Our work supports the feasibility of a practical sensor to remotely detect both the speed and symmetry of rotating bodies.
Sensing single nuclear spins is a central challenge in magnetic resonance based imaging techniques. Although different methods and especially diamond defect based sensing and imaging techniques in principle have shown sufficient sensitivity, signals from single nuclear spins are usually too weak to be distinguished from background noise. Here, we present the detection and identification of remote single C-13 nuclear spins embedded in nuclear spin baths surrounding a single electron spins of a nitrogen-vacancy centre in diamond. With dynamical decoupling control of the centre electron spin, the weak magnetic field ~10 nT from a single nuclear spin located ~3 nm from the centre with hyperfine coupling as weak as ~500 Hz is amplified and detected. The quantum nature of the coupling is confirmed and precise position and the vector components of the nuclear field are determined. Given the distance over which nuclear magnetic fields can be detected the technique marks a firm step towards imaging, detecting and controlling nuclear spin species external to the diamond sensor.
We found that the measurement sensitivity of an optical integrating gyroscope is fundamentally limited due to ponderomotive action of the light leading to the standard quantum limit of the rotation angle detection. The uncorrelated quantum fluctuations of power of clockwise and counterclockwise electromagnetic waves result in optical power-dependent uncertainty of the angular gyroscope position. We also show that, on the other hand, a quantum back action evading measurement of angular momentum of a gyroscope becomes feasible if proper measurement strategy is selected. The angle is perturbed in this case. This observation hints on fundamental inequivalency of integrating and rate gyroscopes.
Classical structured light with controlled polarization and orbital angular momentum (OAM) of electromagnetic waves has varied applications in optical trapping, bio-sensing, optical communications and quantum simulations. The classical electromagnetic theory of such structured light beams and pulses have advanced significantly over the last two decades. However, a framework for the quantum density of spin and OAM for single-photons remains elusive. Here, we develop a theoretical framework and put forth the concept of quantum structured light for space-time wavepackets at the single-photon level. Our work marks a paradigm shift beyond scalar-field theory as well as the paraxial approximation and can be utilized to study the quantum properties of the spin and OAM of all classes of twisted quantum light pulses. We capture the uncertainty in full three-dimensional (3D) projections of vector spin demonstrating their quantum behavior beyond the conventional concept of classical polarization. Even in laser beams with high OAM along the propagation direction, we predict the existence of large OAM quantum fluctuations in the transverse plane which can be verified experimentally. We show that the spin density generates modulated helical texture beyond the paraxial limit and exhibits distinct statistics for Fock-state vs. coherent-state twisted pulses. We introduce the quantum correlator of photon spin density to characterize the nonlocal spin noise providing a rigorous parallel with fermionic spin noise operators. Our work paves the way for quantum spin-OAM physics in twisted single photon pulses and also opens explorations for new phases of light with long-range spin order.
Quantum metrology aims to enhance the precision of various measurement tasks by taking advantages of quantum properties. In many scenarios, precision is not the sole target; the acquired information must be protected once it is generated in the sensing process. Considering a remote sensing scenario where a local site performs cooperative sensing with a remote site to collect private information at the remote site, the loss of sensing data inevitably causes private information to be revealed. Quantum key distribution is known to be a reliable solution for secure data transmission, however, it fails if an eavesdropper accesses the sensing data generated at a remote site. In this study, we demonstrate that by sharing entanglement between local and remote sites, secure quantum remote sensing can be realized, and the secure level is characterized by asymmetric Fisher information gain. Concretely, only the local site can acquire the estimated parameter accurately with Fisher information approaching 1. In contrast, the accessible Fisher information for an eavesdropper is nearly zero even if he/she obtains the raw sensing data at the remote site. This achievement is primarily due to the nonlocal calibration and steering of the probe state at the remote site. Our results explore one significant advantage of ``quantumness and extend the notion of quantum metrology to the security realm.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا