Modeling the Light Curves of the Luminous Type Ic Supernova 2007D


Abstract in English

SN~2007D is a nearby (redshift $z = 0.023146$), luminous Type Ic supernova (SN) having a narrow light curve (LC) and high peak luminosity. Previous research based on the assumption that it was powered by the $^{56}$Ni cascade decay suggested that the inferred $^{56}$Ni mass and the ejecta mass are $sim 1.5$M$_{odot}$ and $sim 3.5$M$_{odot}$, respectively. In this paper, we employ some multiband LC models to model the $R$-band LC and the color ($V-R$) evolution of SN~2007D to investigate the possible energy sources powering them. We find that the pure $^{56}$Ni model is disfavored; the multiband LCs of SN~2007D can be reproduced by a magnetar whose initial rotational period $P_{0}$ and magnetic field strength $B_p$ are $7.28_{-0.21}^{+0.21}$ (or $9.00_{-0.42}^{+0.32}$) ms and $3.10_{-0.35}^{+0.36}times 10^{14}$ (or $2.81_{-0.44}^{+0.43}times 10^{14}$) G, respectively. By comparing the spectrum of SN~2007D with that of some superluminous SNe (SLSNe), we find that it might be a luminous SN like several luminous ``gap-filler optical transients that bridge ordinary and SLSNe, rather than a genuine SLSN.

Download