A Bayesian Analysis of SDSS J0914+0853, a Low-Mass Dual AGN Candidate


Abstract in English

We present the first results from BAYMAX (Bayesian AnalYsis of Multiple AGN in X-rays), a tool that uses a Bayesian framework to quantitatively evaluate whether a given Chandra observation is more likely a single or dual point source. Although the most robust method of determining the presence of dual AGNs is to use X-ray observations, only sources that are widely separated relative to the instrument PSF are easy to identify. It becomes increasingly difficult to distinguish dual AGNs from single AGNs when the separation is on the order of Chandras angular resolution (<1). Using likelihood models for single and dual point sources, BAYMAX quantitatively evaluates the likelihood of an AGN for a given source. Specifically, we present results from BAYMAX analyzing the lowest-mass dual AGN candidate to date, SDSS J0914+0853, where archival Chandra data shows a possible secondary AGN ~0.3 from the primary. Analyzing a new 50 ks Chandra observation, results from BAYMAX shows that SDSS J0914+0853 is most likely a single AGN with a Bayes factor of 13.5 in favor of a single point source model. Further, posterior distributions from the dual point source model are consistent with emission from a single AGN. We find the probability of SDSS J0914+0853 being a dual AGN system with a flux ratio f>0.3 and separation r>0.3 to be very low. Overall, BAYMAX will be an important tool for correctly classifying candidate dual AGNs in the literature, and studying the dual AGN population where past spatial resolution limits have prevented systematic analyses.

Download