Recovering the homogeneous absorption of inhomogeneous media


Abstract in English

The resonant absorption of light by an ensemble of absorbers decreases when the resonance is inhomogeneously broadened, as only a fraction of the ensemble contributes to the absorption at any given optical frequency. Recovering the lost absorption cross-section is of great importance for various applications of light-matter interactions, particularly in quantum optics and for few-photon nonlinearities. However, no recovery mechanism has yet been identified and successfully demonstrated. Here, we first formulate the limit set by the inhomogeneity on the absorption and then present a mechanism able to circumvent this limit and fully recover the homogeneous absorption of the ensemble. We experimentally study this mechanism using hot atomic vapor and demonstrate a 5-fold enhancement of the absorption above the inhomogeneous limit. Our scheme relies on light shifts induced by auxiliary fields and is thus applicable to various physical systems and inhomogeneity mechanisms.

Download