Do you want to publish a course? Click here

Magnetic stability of massive star forming clumps in RCW 106

277   0   0.0 ( 0 )
 Added by Shohei Tamaoki
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The RCW 106 molecular cloud complex is an active massive star-forming region where a ministarburst is taking place. We examined its magnetic structure by near-IR polarimetric observations with the imaging polarimeter SIRPOL on the IRSF 1.4 m telescope. The global magnetic field is nearly parallel to the direction of the Galactic plane and the cloud elongation. We derived the magnetic field strength of $sim100$-$1600~mu$G for 71 clumps with the Davis-Chandrasekhar-Fermi method. We also evaluated the magnetic stability of these clumps and found massive star-forming clumps tend to be magnetically unstable and gravitationally unstable. Therefore, we propose a new criterion to search for massive star-forming clumps. These details suggest that the process enhancing the clump density without an increase of the magnetic flux is essential for the formation of massive stars and the necessity for accreting mass along the magnetic field lines.



rate research

Read More

Protoplanetary disks form through angular momentum conservation in collapsing dense cores. In this work, we perform the first simulations with a maximal resolution down to the astronomical unit (au) of protoplanetary disk formation, through the collapse of 1000 solar mass clumps, treating self-consistently both non-ideal magnetohydrodynamics with ambipolar diffusion as well as radiative transfer in the flux-limited diffusion approximation including stellar feedback. Using the adaptive mesh-refinement code RAMSES, we investigate the influence of the magnetic field on the disks properties with three models. We show that, without magnetic fields, a population dominated by large disks is formed, which is not consistent with Class 0 disk properties as estimated from observations. The inclusion of magnetic field leads, through magnetic braking, to a very different evolution. When it is included, small < 50 au disks represent about half the population. In addition, about ~ 70% of the stars have no disk in this case which suggests that our resolution is still insufficient to preserve the smaller disks. With ambipolar diffusion, the proportion of small disks is also prominent and we report a flat mass distribution around 0.01-0.1 solar mass and a typical disk-to-star mass ratios of ~0.01-0.1. This work shows that the magnetic field and its evolution plays a prominent role in setting the initial properties of disk populations.
We present adaptive optics (AO) near-infrared (JHKs) observations of the deeply embedded massive cluster RCW 38 using NACO on the VLT. Narrowband AO observations centered at wavelengths of 1.28, 2.12, and 2.17 micron were also obtained. The area covered by these observations is about 0.5 pc square, centered on the O star RCW 38 IRS2. We use the JHKs colors to identify young stars with infrared excess. Through a detailed comparison to a nearby control field, we find that most of the 337 stars detected in all three infrared bands are cluster members (~317), with essentially no contamination due to background or foreground sources. Five sources have colors suggestive of deeply embedded protostars, while 53 sources are detected at Ks only; their spatial distribution with respect to the extinction suggests they are highly reddened cluster members. Detectable Ks-band excess is found toward 29 +/- 3 % of the stars. For comparison to a similar area of Orion observed in the near-infrared, mass and extinction cuts are applied, and the excess fractions redetermined. The resulting excesses are then 25 +/- 5 % for RCW 38, and 42 +/- 8 % for Orion. RCW 38 IRS2 is shown to be a massive star binary with a projected separation of ~500 AU. Two regions of molecular hydrogen emission are revealed through the 2.12 micron imaging. One shows a morphology suggestive of a protostellar jet, and is clearly associated with a star only detected at H and Ks, previously identified as a highly obscured X-ray source. Three spatially extended cometary-like objects, suggestive of photoevaporating disks, are identified, but only one is clearly directly influenced by RCW 38 IRS2. A King profile provides a reasonable fit to the cluster radial density profile and a nearest neighbor distance analysis shows essentially no sub-clustering.
185 - Peng Wang 2009
(Abridged) We investigate massive star formation in turbulent, magnetized, parsec-scale clumps of molecular clouds including protostellar outflow feedback using Enzo-based MHD simulations with accreting sink particles and effective resolution $2048^3$. We find that, in the absence of regulation by magnetic fields and outflow feedback, massive stars form readily in a turbulent, moderately condensed clump of $sim 1,600$ solar masses, along with a cluster of hundreds of lower mass stars. The massive stars are fed at high rates by (1) transient dense filaments produced by large-scale turbulent compression at early times, and (2) by the clump-wide global collapse resulting from turbulence decay at late times. In both cases, the bulk of the massive stars mass is supplied from outside a 0.1 pc-sized core that surrounds the star. In our simulation, the massive star is clump-fed rather than core-fed. The need for large-scale feeding makes the massive star formation prone to regulation by outflow feedback, which directly opposes the feeding processes. The outflows reduce the mass accretion rates onto the massive stars by breaking up the dense filaments that feed the massive star formation at early times, and by collectively slowing down the global collapse that fuel the massive star formation at late times. The latter is aided by a moderate magnetic field of strength in the observed range. We conclude that the massive star formation in our simulated turbulent, magnetized, parsec-scale clump is outflow-regulated and clump-fed (ORCF for short). An important implication is that the formation of low-mass stars in a dense clump can affect the formation of massive stars in the same clump, through their outflow feedback on the clump dynamics.
With the spatial resolution of the Atacama Large Millimetre Array (ALMA), dusty galaxies in the distant Universe typically appear as single, compact blobs of dust emission, with a median half-light radius, $approx$ 1 kpc. Occasionally, strong gravitational lensing by foreground galaxies or galaxy clusters has probed spatial scales 1-2 orders of magnitude smaller, often revealing late-stage mergers, sometimes with tantalising hints of sub-structure. One lensed galaxy in particular, the Cosmic Eyelash at $z=$ 2.3, has been cited extensively as an example of where the interstellar medium exhibits obvious, pronounced clumps, on a spatial scale of $approx$ 100 pc. Seven orders of magnitude more luminous than giant molecular clouds in the local Universe, these features are presented as circumstantial evidence that the blue clumps observed in many $zsim$ 2-3 galaxies are important sites of ongoing star formation, with significant masses of gas and stars. Here, we present data from ALMA which reveal that the dust continuum of the Cosmic Eyelash is in fact smooth and can be reproduced using two Sersic profiles with effective radii, 1.2 and 4.4 kpc, with no evidence of significant star-forming clumps down to a spatial scale of $approx$ 80 pc and a star-formation rate of $<$ 3 M$_odot$ yr$^{-1}$.
In this work, we aim to characterise high-mass clumps with infall motions. We selected 327 clumps from the Millimetre Astronomy Legacy Team 90-GHz (MALT90) survey, and identified 100 infall candidates. Combined with the results of He et al. (2015), we obtained a sample of 732 high-mass clumps, including 231 massive infall candidates and 501 clumps where infall is not detected. Objects in our sample were classified as pre-stellar, proto-stellar, HII or photo-dissociation region (PDR). The detection rates of the infall candidates in the pre-stellar, proto-stellar, HII and PDR stages are 41.2%, 36.6%, 30.6% and 12.7%, respectively. The infall candidates have a higher H$_{2}$ column density and volume density compared with the clumps where infall is not detected at every stage. For the infall candidates, the median values of the infall rates at the pre-stellar, proto-stellar, HII and PDR stages are 2.6$times$10$^{-3}$, 7.0$times$10$^{-3}$, 6.5$times$10$^{-3}$ and 5.5$times$10$^{-3}$ M$_odot$ yr$^{-1}$, respectively. These values indicate that infall candidates at later evolutionary stages are still accumulating material efficiently. It is interesting to find that both infall candidates and clumps where infall is not detected show a clear trend of increasing mass from the pre-stellar to proto-stellar, and to the HII stages. The power indices of the clump mass function (ClMF) are 2.04$pm$0.16 and 2.17$pm$0.31 for the infall candidates and clumps where infall is not detected, respectively, which agree well with the power index of the stellar initial mass function (2.35) and the cold Planck cores (2.0).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا