Do you want to publish a course? Click here

PubChemQC PM6: A dataset of 221 million molecules with optimized molecular geometries and electronic properties

184   0   0.0 ( 0 )
 Added by Maho Nakata
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the largest dataset of optimized molecular geometries and electronic properties calculated by the PM6 method for 92.9% of the 91.2 million molecules cataloged in PubChem Compounds retrieved on Aug. 29, 2016. In addition to neutral states, we also calculated those for cationic, anionic, and spin flipped electronic states of 56.2%, 49.7%, and 41.3% of the molecules, respectively. Thus, the grand total calculated is 221 million molecules. The dataset is available at http://pubchemqc.riken.jp/pm6_dataset.html under the Creative Commons Attribution 4.0 International license.

rate research

Read More

In molecular photochemistry, the non-equilibrium character and subsequent ultrafast relaxation dynamics of photoexcitations near the Franck-Condon region limit the control of their chemical reactivity. We address how to harness strong light-matter coupling in optical microcavities to isolate and preferentially select specific reaction pathways out of the myriad of possibilities present in large-scale complex systems. Using Fermis Golden Rule and realistic molecular parameters, we estimate the extent to which molecular configurations can be locked into non-equilibrium excited state configurations for timescales well beyond their natural relaxation times. For upper polaritons--which are largely excitonic in character, molecular systems can be locked into their ground state geometries for tens to thousands of picoseconds and varies with the strength of the exciton/phonon coupling (Huang-Rhys parameter). On the other hand, relaxed LP lifetimes are nearly uniformly distributed between 2.1-2.4,ps and are nearly independent of the Huang-Rhys parameter.
We introduce QM7-X, a comprehensive dataset of 42 physicochemical properties for $approx$ 4.2 M equilibrium and non-equilibrium structures of small organic molecules with up to seven non-hydrogen (C, N, O, S, Cl) atoms. To span this fundamentally important region of chemical compound space (CCS), QM7-X includes an exhaustive sampling of (meta-)stable equilibrium structures - comprised of constitutional/structural isomers and stereoisomers, e.g., enantiomers and diastereomers (including cis-/trans- and conformational isomers) - as well as 100 non-equilibrium structural variations thereof to reach a total of $approx$ 4.2 M molecular structures. Computed at the tightly converged quantum-mechanical PBE0+MBD level of theory, QM7-X contains global (molecular) and local (atom-in-a-molecule) properties ranging from ground state quantities (such as atomization energies and dipole moments) to response quantities (such as polarizability tensors and dispersion coefficients). By providing a systematic, extensive, and tightly-converged dataset of quantum-mechanically computed physicochemical properties, we expect that QM7-X will play a critical role in the development of next-generation machine-learning based models for exploring greater swaths of CCS and performing in silico design of molecules with targeted properties.
High-throughput computational materials design promises to greatly accelerate the process of discovering new materials and compounds, and of optimizing their properties. The large databases of structures and properties that result from computational searches, as well as the agglomeration of data of heterogeneous provenance leads to considerable challenges when it comes to navigating the database, representing its structure at a glance, understanding structure-property relations, eliminating duplicates and identifying inconsistencies. Here we present a case study, based on a data set of conformers of amino acids and dipeptides, of how machine-learning techniques can help addressing these issues. We will exploit a recently developed strategy to define a metric between structures, and use it as the basis of both clustering and dimensionality reduction techniques showing how these can help reveal structure-property relations, identify outliers and inconsistent structures, and rationalise how perturbations (e.g. binding of ions to the molecule) affect the stability of different conformers.
We investigate the use of optimized correlation consistent gaussian basis sets for the study of insulating solids with auxiliary-field quantum Monte Carlo (AFQMC). The exponents of the basis set are optimized through the minimization of the second order M{o}ller--Plesset perturbation theory (MP2) energy in a small unit cell of the solid. We compare against other alternative basis sets proposed in the literature, namely calculations in the Kohn--Sham basis and in the natural orbitals of an MP2 calculation. We find that our optimized basis sets accelerate the convergence of the AFQMC correlation energy compared to a Kohn--Sham basis, and offer similar convergence to MP2 natural orbitals at a fraction of the cost needed to generate them. We also suggest the use of an improved, method independent, MP2-based basis set correction that significantly reduces the required basis set sizes needed to converge the correlation energy. With these developments, we study the relative performance of these basis sets in LiH, Si and MgO, and determine that our optimized basis sets yield the most consistent results as a function of volume. Using these optimized basis sets, we systematically converge the AFQMC calculations to the complete basis set and thermodynamic limit and find excellent agreement with experiment for systems studied. Although we focus on AFQMC, our basis set generation procedure is independent of the subsequent correlated wavefunction method used.
166 - Y. Xue , G.A. Mansoori 2018
We report self-assembly and phase transition behavior of lower diamondoid molecules and their primary derivatives using molecular dynamic (MD) simulation and density functional theory (DFT) calculations. Two lower diamondoids (adamantane and diamantane), three adamantane derivatives (amantadine, memantine and rimantadine) and two artificial molecules (Adamantane+Na and Diamantane+Na) are studied separately in 125-molecule simulation systems. We performed DFT calculations to optimize their molecular geometries and obtain atomic electronic charges for the corresponding MD simulation, by which we obtained self-assembly structures and simulation trajectories for the seven molecules. Radial distribution functions and structure factors studies showed clear phase transitions for the seven molecules.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا