No Arabic abstract
We report the development and application of a new method for carrying out computational investigations of the effects of mass and force-constant (FC) disorder on phonon spectra. The method is based on the recently developed typical medium dynamical cluster approach (TMDCA), which is a Greens function approach. Excellent quantitative agreement with previous exact diagonalization results establishes the veracity of the method. Application of the method to a model system of binary mass and FC-disordered system leads to several findings. A narrow resonance, significantly below the van Hove singularity, that has been termed as the boson peak, is seen to emerge for low soft particle concentrations. We show, using the typical phonon spectrum, that the states constituting the boson peak cross over from being completely localized to being extended as a function of increasing soft particle concentration. In general, an interplay of mass and FC disorder is found to be cooperative in nature, enhancing phonon localization over all frequencies. However, for certain range of frequencies, and depending on material parameters, FC disorder can delocalize the states that were localized by mass disorder, and vice-versa. Modeling vacancies as weakly bonded sites with vanishing mass, we find that vacancies, even at very low concentrations, are extremely effective in localizing phonons. Thus, inducing vacancies is proposed as a promising route for efficient thermoelectrics. Finally, we use model parameters corresponding to the alloy system, Ni1-xPtx, and show that mass disorder alone is insufficient to explain the pseudogap in the phonon spectrum; the concomitant presence of FC disorder is necessary.
We describe non-conventional localization of the midband E=0 state in square and cubic finite bipartite lattices with off-diagonal disorder by solving numerically the linear equations for the corresponding amplitudes. This state is shown to display multifractal fluctuations, having many sparse peaks, and by scaling the participation ratio we obtain its disorder-dependent fractal dimension $D_{2}$. A logarithmic average correlation function grows as $g(r) sim eta ln r$ at distance $r$ from the maximum amplitude and is consistent with a typical overall power-law decay $|psi(r)| sim r^{-eta}$ where $eta $ is proportional to the strength of off-diagonal disorder.
We generalize the typical medium dynamical cluster approximation (TMDCA) and the local Blackman, Esterling, and Berk (BEB) method for systems with off-diagonal disorder. Using our extended formalism we perform a systematic study of the effects of non-local disorder-induced correlations and of off-diagonal disorder on the density of states and the mobility edge of the Anderson localized states. We apply our method to the three-dimensional Anderson model with configuration dependent hopping and find fast convergence with modest cluster sizes. Our results are in good agreement with the data obtained using exact diagonalization, and the transfer matrix and kernel polynomial methods.
Non-diagonal (bond) disorder in graphene broadens Landau levels (LLs) in the same way as random potential. The exception is the zeroth LL, $n=0$, which is robust to the bond disorder, since it does not mix different $n=0$ states within a given valley. The mechanism of broadening of the $n=0$ LL is the inter-valley scattering. Several numerical simulations of graphene with bond disorder had established that $n=0$ LL is not only anomalously narrow but also that its shape is very peculiar with three maxima, one at zero energy, $E=0$, and two others at finite energies $pm E$. We study theoretically the structure of the states in $n=0$ LL in the presence of bond disorder. Adopting the assumption that the bond disorder is strongly anisotropic, namely, that one type of bonds is perturbed much stronger than other two, allowed us to get an analytic expression for the density of states which agrees with numerical simulations remarkably well. On the qualitative level, our key finding is that delocalization of $E=0$ state has a dramatic back effect on the density of states near $E=0$. The origin of this unusual behavior is the strong correlation of eigenstates in different valleys.
We study a one-dimensional quasiperiodic system described by the off-diagonal Aubry-Andr{e} model and investigate its phase diagram by using the symmetry and the multifractal analysis. It was shown in a recent work ({it Phys. Rev. B} {bf 93}, 205441 (2016)) that its phase diagram was divided into three regions, dubbed the extended, the topologically-nontrivial localized and the topologically-trivial localized phases, respectively. Out of our expectation, we find an additional region of the extended phase which can be mapped into the original one by a symmetry transformation. More unexpectedly, in both localized phases, most of the eigenfunctions are neither localized nor extended. Instead, they display critical features, that is, the minimum of the singularity spectrum is in a range $0<gamma_{min}<1$ instead of $0$ for the localized state or $1$ for the extended state. Thus, a mixed phase is found with a mixture of localized and critical eigenfunctions.
We study a class of off-diagonal quasiperiodic hopping models described by one-dimensional Su-Schrieffer-Heeger chain with quasiperiodic modulations. We unveil a general dual-mapping relation in parameter space of the dimerization strength $lambda$ and the quasiperiodic modulation strength $V$, regardless of the specific details of the quasiperiodic modulation. Moreover, we demonstrated semi-analytically and numerically that under the specific quasiperiodic modulation, quantum criticality can emerge and persist in a wide parameter space. These unusual properties provides a distinctive paradigm compared with the diagonal quasiperiodic systems.