No Arabic abstract
Most animal and human locomotion behaviors for solving complex tasks involve dynamic motions and rich contact interaction. In fact, complex maneuvers need to consider dynamic movement and contact events at the same time. We present a hierarchical trajectory optimization approach for planning dynamic movements with unscheduled contact sequences. We compute whole-body motions that achieve goals that cannot be reached in a kinematic fashion. First, we find a feasible CoM motion according to the centroidal dynamics of the robot. Then, we refine the solution by applying the robots full-dynamics model, where the feasible CoM trajectory is used as a warm-start point. To accomplish the unscheduled contact behavior, we use complementarity constraints to describe the contact model, i.e. environment geometry and non-sliding active contacts. Both optimization phases are posed as Mathematical Program with Complementarity Constraints (MPCC). Experimental trials demonstrate the performance of our planning approach in a set of challenging tasks.
This paper presents a novel approach using sensitivity analysis for generalizing Differential Dynamic Programming (DDP) to systems characterized by implicit dynamics, such as those modelled via inverse dynamics and variational or implicit integrators. It leads to a more general formulation of DDP, enabling for example the use of the faster recursive Newton-Euler inverse dynamics. We leverage the implicit formulation for precise and exact contact modelling in DDP, where we focus on two contributions: (1) Contact dynamics in acceleration level that enables high-order integration schemes; (2) Formulation using an invertible contact model in the forward pass and a closed form solution in the backward pass to improve the numerical resolution of contacts. The performance of the proposed framework is validated (1) by comparing implicit versus explicit DDP for the swing-up of a double pendulum, and (2) by planning motions for two tasks using a single leg model making multi-body contacts with the environment: standing up from ground, where a priori contact enumeration is challenging, and maintaining balance under an external perturbation.
This paper describes a reflexive multilayered mission planner with a mounted energy efficient local path planner for Unmanned Underwater Vehicles (UUV) navigation throughout the complex subsea volume in a time-variant semi-dynamic operation network. The UUV routing protocol in Underwater Wireless Sensor Network (UNSW) is generalized with a homogeneous Dynamic Knapsack-Traveler Salesman Problem emerging with an adaptive path planning mechanism to address UUVs long-duration missions on dynamically changing subsea volume. The framework includes a base layer of global path planning, an inner layer of local path planning and an environmental sub-layer. Such a multilayer integrated structure facilitates the framework to adopt any algorithm with real-time performance. The evolutionary technique known as Differential Evolution algorithm is employed by both base and inner layers to examine the performance of the framework in efficient mission timing and its resilience against the environmental disturbances. Relying on reactive nature of the framework and fast computational performance of the DE algorithm, the simulations show promising results and this new framework guarantees a safe and efficient deployment in a turbulent uncertain marine environment passing through a proper sequence of stations considering various constraint in a complex environment.
Planning whole-body motions while taking into account the terrain conditions is a challenging problem for legged robots since the terrain model might produce many local minima. Our coupled planning method uses stochastic and derivatives-free search to plan both foothold locations and horizontal motions due to the local minima produced by the terrain model. It jointly optimizes body motion, step duration and foothold selection, and it models the terrain as a cost-map. Due to the novel attitude planning method, the horizontal motion plans can be applied to various terrain conditions. The attitude planner ensures the robot stability by imposing limits to the angular acceleration. Our whole-body controller tracks compliantly trunk motions while avoiding slippage, as well as kinematic and torque limits. Despite the use of a simplified model, which is restricted to flat terrain, our approach shows remarkable capability to deal with a wide range of non-coplanar terrains. The results are validated by experimental trials and comparative evaluations in a series of terrains of progressively increasing complexity.
This paper presents a deep-learning based CPP algorithm, called Coverage Path Planning Network (CPPNet). CPPNet is built using a convolutional neural network (CNN) whose input is a graph-based representation of the occupancy grid map while its output is an edge probability heat graph, where the value of each edge is the probability of belonging to the optimal TSP tour. Finally, a greedy search is used to select the final optimized tour. CPPNet is trained and comparatively evaluated against the TSP tour. It is shown that CPPNet provides near-optimal solutions while requiring significantly less computational time, thus enabling real-time coverage path planning in partially unknown and dynamic environments.
For autonomous vehicles, effective behavior planning is crucial to ensure safety of the ego car. In many urban scenarios, it is hard to create sufficiently general heuristic rules, especially for challenging scenarios that some new human drivers find difficult. In this work, we propose a behavior planning structure based on reinforcement learning (RL) which is capable of performing autonomous vehicle behavior planning with a hierarchical structure in simulated urban environments. Application of the hierarchical structure allows the various layers of the behavior planning system to be satisfied. Our algorithms can perform better than heuristic-rule-based methods for elective decisions such as when to turn left between vehicles approaching from the opposite direction or possible lane-change when approaching an intersection due to lane blockage or delay in front of the ego car. Such behavior is hard to evaluate as correct or incorrect, but for some aggressive expert human drivers handle such scenarios effectively and quickly. On the other hand, compared to traditional RL methods, our algorithm is more sample-efficient, due to the use of a hybrid reward mechanism and heuristic exploration during the training process. The results also show that the proposed method converges to an optimal policy faster than traditional RL methods.