Do you want to publish a course? Click here

StereoDRNet: Dilated Residual Stereo Net

157   0   0.0 ( 0 )
 Added by Rohan Chabra
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We propose a system that uses a convolution neural network (CNN) to estimate depth from a stereo pair followed by volumetric fusion of the predicted depth maps to produce a 3D reconstruction of a scene. Our proposed depth refinement architecture, predicts view-consistent disparity and occlusion maps that helps the fusion system to produce geometrically consistent reconstructions. We utilize 3D dilated convolutions in our proposed cost filtering network that yields better filtering while almost halving the computational cost in comparison to state of the art cost filtering architectures.For feature extraction we use the Vortex Pooling architecture. The proposed method achieves state of the art results in KITTI 2012, KITTI 2015 and ETH 3D stereo benchmarks. Finally, we demonstrate that our system is able to produce high fidelity 3D scene reconstructions that outperforms the state of the art stereo system.



rate research

Read More

Automatic segmentation of organs-at-risk (OAR) in computed tomography (CT) is an essential part of planning effective treatment strategies to combat lung and esophageal cancer. Accurate segmentation of organs surrounding tumours helps account for the variation in position and morphology inherent across patients, thereby facilitating adaptive and computer-assisted radiotherapy. Although manual delineation of OARs is still highly prevalent, it is prone to errors due to complex variations in the shape and position of organs across patients, and low soft tissue contrast between neighbouring organs in CT images. Recently, deep convolutional neural networks (CNNs) have gained tremendous traction and achieved state-of-the-art results in medical image segmentation. In this paper, we propose a deep learning framework to segment OARs in thoracic CT images, specifically for the: heart, esophagus, trachea and aorta. Our approach employs dilated convolutions and aggregated residual connections in the bottleneck of a U-Net styled network, which incorporates global context and dense information. Our method achieved an overall Dice score of 91.57% on 20 unseen test samples from the ISBI 2019 SegTHOR challenge.
249 - Zifan Shi , Na Fan , Dit-Yan Yeung 2021
Existing vision systems for autonomous driving or robots are sensitive to waterdrops adhered to windows or camera lenses. Most recent waterdrop removal approaches take a single image as input and often fail to recover the missing content behind waterdrops faithfully. Thus, we propose a learning-based model for waterdrop removal with stereo images. To better detect and remove waterdrops from stereo images, we propose a novel row-wise dilated attention module to enlarge attentions receptive field for effective information propagation between the two stereo images. In addition, we propose an attention consistency loss between the ground-truth disparity map and attention scores to enhance the left-right consistency in stereo images. Because of related datasets unavailability, we collect a real-world dataset that contains stereo images with and without waterdrops. Extensive experiments on our dataset suggest that our model outperforms state-of-the-art methods both quantitatively and qualitatively. Our source code and the stereo waterdrop dataset are available at href{https://github.com/VivianSZF/Stereo-Waterdrop-Removal}{https://github.com/VivianSZF/Stereo-Waterdrop-Removal}
We propose an embarrassingly simple but very effective scheme for high-quality dense stereo reconstruction: (i) generate an approximate reconstruction with your favourite stereo matcher; (ii) rewarp the input images with that approximate model; (iii) with the initial reconstruction and the warped images as input, train a deep network to enhance the reconstruction by regressing a residual correction; and (iv) if desired, iterate the refinement with the new, improved reconstruction. The strategy to only learn the residual greatly simplifies the learning problem. A standard Unet without bells and whistles is enough to reconstruct even small surface details, like dormers and roof substructures in satellite images. We also investigate residual reconstruction with less information and find that even a single image is enough to greatly improve an approximate reconstruction. Our full model reduces the mean absolute error of state-of-the-art stereo reconstruction systems by >50%, both in our target domain of satellite stereo and on stereo pairs from the ETH3D benchmark.
Dense stereo matching with deep neural networks is of great interest to the research community. Existing stereo matching networks typically use slow and computationally expensive 3D convolutions to improve the performance, which is not friendly to real-world applications such as autonomous driving. In this paper, we propose the Efficient Stereo Network (ESNet), which achieves high performance and efficient inference at the same time. ESNet relies only on 2D convolution and computes multi-scale cost volume efficiently using a warping-based method to improve the performance in regions with fine-details. In addition, we address the matching ambiguity issue in the occluded region by proposing ESNet-M, a variant of ESNet that additionally estimates an occlusion mask without supervision. We further improve the network performance by proposing a new training scheme that includes dataset scheduling and unsupervised pre-training. Compared with other low-cost dense stereo depth estimation methods, our proposed approach achieves state-of-the-art performance on the Scene Flow [1], DrivingStereo [2], and KITTI-2015 dataset [3]. Our code will be made available.
Given that the neural and connective tissues of the optic nerve head (ONH) exhibit complex morphological changes with the development and progression of glaucoma, their simultaneous isolation from optical coherence tomography (OCT) images may be of great interest for the clinical diagnosis and management of this pathology. A deep learning algorithm was designed and trained to digitally stain (i.e. highlight) 6 ONH tissue layers by capturing both the local (tissue texture) and contextual information (spatial arrangement of tissues). The overall dice coefficient (mean of all tissues) was $0.91 pm 0.05$ when assessed against manual segmentations performed by an expert observer. We offer here a robust segmentation framework that could be extended for the automated parametric study of the ONH tissues.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا