Do you want to publish a course? Click here

Leveraging Electromagnetic Side-Channel Analysis for the Investigation of IoT Devices

102   0   0.0 ( 0 )
 Added by Mark Scanlon
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Internet of Things (IoT) devices have expanded the horizon of digital forensic investigations by providing a rich set of new evidence sources. IoT devices includes health implants, sports wearables, smart burglary alarms, smart thermostats, smart electrical appliances, and many more. Digital evidence from these IoT devices is often extracted from third party sources, e.g., paired smartphone applications or the devices back-end cloud services. However vital digital evidence can still reside solely on the IoT device itself. The specifics of the IoT devices hardware is a black-box in many cases due to the lack of proven, established techniques to inspect IoT devices. This paper presents a novel methodology to inspect the internal software activities of IoT devices through their electromagnetic radiation emissions during live device investigation. When a running IoT device is identified at a crime scene, forensically important software activities can be revealed through an electromagnetic side-channel analysis (EM-SCA) attack. By using two representative IoT hardware platforms, this work demonstrates that cryptographic algorithms running on high-end IoT devices can be detected with over 82% accuracy, while minor software code differences in low-end IoT devices could be detected over 90% accuracy using a neural network-based classifier. Furthermore, it was experimentally demonstrated that malicious modification of the stock firmware of an IoT device can be detected through machine learning-assisted EM-SCA techniques. These techniques provide a new investigative vector for digital forensic investigators to inspect IoT devices.



rate research

Read More

Todays mobile devices contain densely packaged system-on-chips (SoCs) with multi-core, high-frequency CPUs and complex pipelines. In parallel, sophisticated SoC-assisted security mechanisms have become commonplace for protecting device data, such as trusted execution environments, full-disk and file-based encryption. Both advancements have dramatically complicated the use of conventional physical attacks, requiring the development of specialised attacks. In this survey, we consolidate recent developments in physical fault injections and side-channel attacks on modern mobile devices. In total, we comprehensively survey over 50 fault injection and side-channel attack papers published between 2009-2021. We evaluate the prevailing methods, compare existing attacks using a common set of criteria, identify several challenges and shortcomings, and suggest future directions of research.
Due to the constant increase and versatility of IoT devices that should keep sensitive information private, Side-Channel Analysis (SCA) attacks on embedded devices are gaining visibility in the industrial field. The integration and validation of countermeasures against SCA can be an expensive and cumbersome process, especially for the less experienced ones, and current certification procedures require to attack the devices under test using multiple SCA techniques and attack vectors, often implying a high degree of complexity. The goal of this paper is to ease one of the most crucial and tedious steps of profiling attacks i.e. the points of interest (POI) selection and hence assist the SCA evaluation process. To this end, we introduce the usage of Estimation of Distribution Algorithms (EDAs) in the SCA field in order to automatically tune the point of interest selection. We showcase our approach on several experimental use cases, including attacks on unprotected and protected AES implementations over distinct copies of the same device, dismissing in this way the portability issue.
84 - Muhammad Usman 2020
The internet of things refers to the network of devices connected to the internet and can communicate with each other. The term things is to refer non-conventional devices that are usually not connected to the internet. The network of such devices or things is growing at an enormous rate. The security and privacy of the data flowing through these things is a major concern. The devices are low powered and the conventional encryption algorithms are not suitable to be employed on these devices. In this correspondence a survey of the contemporary lightweight encryption algorithms suitable for use in the IoT environment has been presented.
The increasing prevalence of Internet of Things (IoT) devices has made it inevitable that their pertinence to digital forensic investigations will increase into the foreseeable future. These devices produced by various vendors often posses limited standard interfaces for communication, such as USB ports or WiFi/Bluetooth wireless interfaces. Meanwhile, with an increasing mainstream focus on the security and privacy of user data, built-in encryption is becoming commonplace in consumer-level computing devices, and IoT devices are no exception. Under these circumstances, a significant challenge is presented to digital forensic investigations where data from IoT devices needs to be analysed. This work explores the electromagnetic (EM) side-channel analysis literature for the purpose of assisting digital forensic investigations on IoT devices. EM side-channel analysis is a technique where unintentional electromagnetic emissions are used for eavesdropping on the operations and data handling of computing devices. The non-intrusive nature of EM side-channel approaches makes it a viable option to assist digital forensic investigations as these attacks require, and must result in, no modification to the target device. The literature on various EM side-channel analysis attack techniques are discussed - selected on the basis of their applicability in IoT device investigation scenarios. The insight gained from the background study is used to identify promising future applications of the technique for digital forensic analysis on IoT devices - potentially progressing a wide variety of currently hindered digital investigations.
This work investigates the possibilities enabled by federated learning concerning IoT malware detection and studies security issues inherent to this new learning paradigm. In this context, a framework that uses federated learning to detect malware affecting IoT devices is presented. N-BaIoT, a dataset modeling network traffic of several real IoT devices while affected by malware, has been used to evaluate the proposed framework. Both supervised and unsupervised federated models (multi-layer perceptron and autoencoder) able to detect malware affecting seen and unseen IoT devices of N-BaIoT have been trained and evaluated. Furthermore, their performance has been compared to two traditional approaches. The first one lets each participant locally train a model using only its own data, while the second consists of making the participants share their data with a central entity in charge of training a global model. This comparison has shown that the use of more diverse and large data, as done in the federated and centralized methods, has a considerable positive impact on the model performance. Besides, the federated models, while preserving the participants privacy, show similar results as the centralized ones. As an additional contribution and to measure the robustness of the federated approach, an adversarial setup with several malicious participants poisoning the federated model has been considered. The baseline model aggregation averaging step used in most federated learning algorithms appears highly vulnerable to different attacks, even with a single adversary. The performance of other model aggregation functions acting as countermeasures is thus evaluated under the same attack scenarios. These functions provide a significant improvement against malicious participants, but more efforts are still needed to make federated approaches robust.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا