No Arabic abstract
We study a ferromagnetic instability in a doped single-band Hubbard model by means of dynamical mean-field theory with the continuous-time quantum Monte Carlo simulations. Examining the effect of the strong correlations in the system on the hypercubic and Bethe lattice, we find that the ferromagnetically ordered state appears in the former, while it does not in the latter. We also reveal that the ferromagnetic order is more stable in the case that the noninteracting DOS exhibits a slower decay in the high-energy region. The present results suggest that, in the strong-coupling regime, the high-energy part of DOS plays an essential role for the emergence of the ferromagnetically ordered state, in contrast to the Stoner criterion justified in the weak interaction limit.
A strong-coupling expansion for models of correlated electrons in any dimension is presented. The method is applied to the Hubbard model in $d$ dimensions and compared with numerical results in $d=1$. Third order expansion of the Green function suffices to exhibit both the Mott metal-insulator transition and a low-temperature regime where antiferromagnetic correlations are strong. It is predicted that some of the weak photoemission signals observed in one-dimensional systems such as $SrCuO_2$ should become stronger as temperature increases away from the spin-charge separated state.
We analyze the quantum phase diagram of the Holstein-Hubbard model using an asymptotically exact strong-coupling expansion. We find all sorts of interesting phases including a pair-density wave (PDW), a charge 4e (and even a charge 6e) superconductor, regimes of phase separation, and a variety of distinct charge-density-wave (CDW), spin-density-wave (SDW) and superconducting regimes. We chart the crossovers that occur as a function of the degree of retardation, i.e. the ratio of characteristic phonon frequency to the strength of interactions.
We study a ferromagnetic instability in a single-band Hubbard model on the hypercubic lattice away from half filling. Using dynamical mean-field theory with the continuous-time quantum Monte Carlo simulations based on the segment algorithm, we calculate the magnetic susceptibility in the weak and strong coupling regions systematically. We then find how ferromagnetic fluctuations are enhanced when the interaction strength and density of holes are varied. The efficiency of the double flip updates in the Monte Carlo simulations is also addressed.
The Hubbard model, which augments independent-electron band theory with a single parameter to describe electron-electron correlations, is widely regarded to be the `standard model of condensed matter physics. The model has been remarkably successful at addressing a range of correlation effects in solids, but beyond one dimension its solution is intractable. Much current research aims, therefore, at finding appropriate approximations to the Hubbard model phase diagram. Here we take the new approach of using ab initio electronic structure methods to design a material whose Hamiltonian is that of the single-band Hubbard model. Solution of the Hubbard model will then be available through measurement of the materials properties. After identifying an appropriate crystal class and several appropriate chemistries, we use density functional theory and dynamical mean-field theory to screen for the desired electronic band structure and metal-insulator transition. We then explore the most promising candidates for structural stability and suitability for doping and propose specific materials for subsequent synthesis. Finally, we identify a regime -- that should manifest in our bespoke material -- in which the single-band Hubbard model on a triangular lattice exhibits exotic d-wave superconductivity.
Using linear response theory with the dynamical mean-field approximation we investigate the particle-hole instabilities of the two-band Hubbard model in the vicinity of the spin-state transition. Besides the previously reported high-spin--low-spin order we find an instability towards triplet excitonic condensate. We discuss the strong and weak coupling limits of the model, in particular, a connection to the spinful hard-core bosons with a nearest-neighbor interaction. Possible realization in LaCoO3 at intermediate temperatures is briefly discussed.