Thermal conductivity of crystalline AlN and the influence of atomic-scale defects


Abstract in English

Aluminum nitride (AlN) plays a key role in modern power electronics and deep-ultraviolet photonics, where an understanding of its thermal properties is essential. Here we measure the thermal conductivity of crystalline AlN by the 3${omega}$ method, finding it ranges from 674 ${pm}$ 56 W/m/K at 100 K to 186 ${pm}$ 7 W/m/K at 400 K, with a value of 237 ${pm}$ 6 W/m/K at room temperature. We compare these data with analytical models and first principles calculations, taking into account atomic-scale defects (O, Si, C impurities, and Al vacancies). We find Al vacancies play the greatest role in reducing thermal conductivity because of the largest mass-difference scattering. Modeling also reveals that 10% of heat conduction is contributed by phonons with long mean free paths, over ~7 ${mu}$m at room temperature, and 50% by phonons with MFPs over ~0.3 ${mu}$m. Consequently, the effective thermal conductivity of AlN is strongly reduced in sub-micron thin films or devices due to phonon-boundary scattering.

Download