No Arabic abstract
We present a framework for devising discretely energy-stable schemes for general dissipative systems based on a generalized auxiliary variable. The auxiliary variable, a scalar number, can be defined in terms of the energy functional by a general class of functions, not limited to the square root function adopted in previous approaches. The current method has another remarkable property: the computed values for the generalized auxiliary variable are guaranteed to be positive on the discrete level, regardless of the time step sizes or the external forces. This property of guaranteed positivity is not available in previous approaches. A unified procedure for treating the dissipative governing equations and the generalized auxiliary variable on the discrete level has been presented. The discrete energy stability of the proposed numerical scheme and the positivity of the computed auxiliary variable have been proved for general dissipative systems. The current method, termed gPAV (generalized Positive Auxiliary Variable), requires only the solution of linear algebraic equations within a time step. With appropriate choice of the operator in the algorithm, the resultant linear algebraic systems upon discretization involve only constant and time-independent coefficient matrices, which only need to be computed once and can be pre-computed. Several specific dissipative systems are studied in relative detail using the gPAV framework. Ample numerical experiments are presented to demonstrate the performance of the method, and the robustness of the scheme at large time step sizes.
We present an unconditionally energy-stable scheme for approximating the incompressible Navier-Stokes equations on domains with outflow/open boundaries. The scheme combines the generalized Positive Auxiliary Variable (gPAV) approach and a rotational velocity-correction type strategy, and the adoption of the auxiliary variable simplifies the numerical treatment for the open boundary conditions. The discrete energy stability of the proposed scheme has been proven, irrespective of the time step sizes. Within each time step the scheme entails the computation of two velocity fields and two pressure fields, by solving an individual de-coupled Helmholtz (including Poisson) type equation with a constant pre-computable coefficient matrix for each of these field variables. The auxiliary variable, being a scalar number, is given by a well-defined explicit formula within a time step, which ensures the positivity of its computed values. Extensive numerical experiments with several flows involving outflow/open boundaries in regimes where the backflow instability becomes severe have been presented to test the performance of the proposed method and to demonstrate its stability at large time step sizes.
This article presents a new numerical scheme for the discretization of dissipative particle dynamics with conserved energy. The key idea is to reduce elementary pairwise stochastic dynamics (either fluctuation/dissipation or thermal conduction) to effective single-variable dynamics, and to approximate the solution of these dynamics with one step of a Metropolis-Hastings algorithm. This ensures by construction that no negative internal energies are encountered during the simulation, and hence allows to increase the admissible timesteps to integrate the dynamics, even for systems with small heat capacities. Stability is only limited by the Hamiltonian part of the dynamics, which suggests resorting to multiple timestep strategies where the stochastic part is integrated less frequently than the Hamiltonian one.
In this paper, two finite difference numerical schemes are proposed and analyzed for the droplet liquid film model, with a singular Leonard-Jones energy potential involved. Both first and second order accurate temporal algorithms are considered. In the first order scheme, the convex potential and the surface diffusion terms are implicitly, while the concave potential term is updated explicitly. Furthermore, we provide a theoretical justification that this numerical algorithm has a unique solution, such that the positivity is always preserved for the phase variable at a point-wise level, so that a singularity is avoided in the scheme. In fact, the singular nature of the Leonard-Jones potential term around the value of 0 prevents the numerical solution reaching such singular value, so that the positivity structure is always preserved. Moreover, an unconditional energy stability of the numerical scheme is derived, without any restriction for the time step size. In the second order numerical scheme, the BDF temporal stencil is applied, and an alternate convex-concave decomposition is derived, so that the concave part corresponds to a quadratic energy. In turn, the combined Leonard-Jones potential term is treated implicitly, and the concave part the is approximated by a second order Adams-Bashforth explicit extrapolation, and an artificial Douglas-Dupont regularization term is added to ensure the energy stability. The unique solvability and the positivity-preserving property for the second order scheme could be similarly established. In addition, optimal rate convergence analysis is provided for both the first and second order accurate schemes. A few numerical simulation results are also presented, which demonstrate the robustness of the numerical schemes.
This work presents new parallelizable numerical schemes for the integration of Dissipative Particle Dynamics with Energy conservation (DPDE). So far, no numerical scheme introduced in the literature is able to correctly preserve the energy over long times and give rise to small errors on average properties for moderately small timesteps, while being straightforwardly parallelizable. We present in this article two new methods, both straightforwardly parallelizable, allowing to correctly preserve the total energy of the system. We illustrate the accuracy and performance of these new schemes both on equilibrium and nonequilibrium parallel simulations.
In this paper, we propose a novel family of high-order numerical schemes for the gradient flow models based on the scalar auxiliary variable (SAV) approach, which is named the high-order scalar auxiliary variable (HSAV) method. The newly proposed schemes could be shown to reach arbitrarily high order in time while preserving the energy dissipation law without any restriction on the time step size (i.e., unconditionally energy stable). The HSAV strategy is rather general that it does not depend on the specific expression of the effective free energy, such that it applies to a class of thermodynamically consistent gradient flow models arriving at semi-discrete high-order energy-stable schemes. We then employ the Fourier pseudospectral method for spatial discretization. The fully discrete schemes are also shown to be unconditionally energy stable. Furthermore, we present several numerical experiments on several widely-used gradient flow models, to demonstrate the accuracy, efficiency and unconditionally energy stability of the HSAV schemes. The numerical results verify that the HSAV schemes can reach the expected order of accuracy, and it allows a much larger time step size to reach the same accuracy than the standard SAV schemes.