Lasing on a narrow transition in a cold thermal strontium ensemble


Abstract in English

Highly stable laser sources based on narrow atomic transitions provide a promising platform for direct generation of stable and accurate optical frequencies. Here we investigate a simple system operating in the high-temperature regime of cold atoms. The interaction between a thermal ensemble of $^{88}$Sr at mK temperatures and a medium-finesse cavity produces strong collective coupling and facilitates high atomic coherence which causes lasing on the dipole forbidden $^1$S$_0 leftrightarrow ^3$P$_1$ transition. We experimentally and theoretically characterize the lasing threshold and evolution of such a system, and investigate decoherence effects in an unconfined ensemble. We model the system using a Tavis-Cummings model, and characterize velocity-dependent dynamics of the atoms as well as the dependency on the cavity-detuning.

Download