No Arabic abstract
Turbulence is characterized by a large number of degrees of freedom, distributed over several length scales, that result into a disordered state of a fluid. The field of quantum turbulence deals with the manifestation of turbulence in quantum fluids, such as liquid helium and ultracold gases. We review, from both experimental and theoretical points of view, advances in quantum turbulence focusing on atomic Bose-Einstein condensates. We also explore the similarities and differences between quantum and classical turbulence. Lastly, we present challenges and possible directions for the field. We summarize questions that are being asked in recent works, which need to be answered in order to understand fundamental properties of quantum turbulence, and we provide some possible ways of investigating them.
Advances in light shaping for optical trapping of neutral particles have led to the development of box traps for ultracold atoms and molecules. These traps have allowed the creation of homogeneous quantum gases and opened new possibilities for studies of many-body physics. They simplify the interpretation of experimental results, provide more direct connections with theory, and in some cases allow qualitatively new, hitherto impossible experiments. Here we review progress in this emerging field.
We study the elementary characteristics of turbulence in a quantum ferrofluid through the context of a dipolar Bose gas condensing from a highly non-equilibrium thermal state. Our simulations reveal that the dipolar interactions drive the emergence of polarized turbulence and density corrugations. The superfluid vortex lines and density fluctuations adopt a columnar or stratified configuration, depending on the sign of the dipolar interactions, with the vortices tending to form in the low density regions to minimize kinetic energy. When the interactions are dominantly dipolar, the decay of vortex line length is enhanced, closely following a $t^{-3/2}$ behaviour. This system poses exciting prospects for realizing stratified quantum turbulence and new levels of generating and controlling turbulence using magnetic fields.
Ultracold atomic gases have developed into prime systems for experimental studies of Efimov three-body physics and related few-body phenomena, which occur in the universal regime of resonant interactions. In the last few years, many important breakthroughs have been achieved, confirming basic predictions of universal few-body theory and deepening our understanding of such systems. We review the basic ideas along with the fast experimental developments of the field, focussing on ultracold cesium gases as a well-investigated model system. Triatomic Efimov resonances, atom-dimer Efimov resonances, and related four-body resonances are discussed as central observables. We also present some new observations of such resonances, supporting and complementing the set of available data.
Over the last years the exciting developments in the field of ultracold atoms confined in optical lattices have led to numerous theoretical proposals devoted to the quantum simulation of problems e.g. known from condensed matter physics. Many of those ideas demand for experimental environments with non-cubic lattice geometries. In this paper we report on the implementation of a versatile three-beam lattice allowing for the generation of triangular as well as hexagonal optical lattices. As an important step the superfluid-Mott insulator (SF-MI) quantum phase transition has been observed and investigated in detail in this lattice geometry for the first time. In addition to this we study the physics of spinor Bose-Einstein condensates (BEC) in the presence of the triangular optical lattice potential, especially spin changing dynamics across the SF-MI transition. Our results suggest that below the SF-MI phase transition, a well-established mean-field model describes the observed data when renormalizing the spin-dependent interaction. Interestingly this opens new perspectives for a lattice driven tuning of a spin dynamics resonance occurring through the interplay of quadratic Zeeman effect and spin-dependent interaction. We finally discuss further lattice configurations which can be realized with our setup.
The method of functional renormalization is applied to the theoretical investigation of ultracold quantum gases. Flow equations are derived for a Bose gas with approximately pointlike interaction, for a Fermi gas with two (hyperfine) spin components in the Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensation (BEC) crossover and for a Fermi gas with three components. The solution of the flow equations determine the properties of these systems both in the few-body regime and in thermal equilibrium. For the Bose gas this covers the quantum phase diagram, the condensate and superfluid fraction, the critical temperature, the correlation length, the specific heat or sound propagation. The properties are discussed both for three and two spatial dimensions. The discussion of the Fermi gas in the BCS-BEC crossover concentrates on the effect of particle-hole fluctuations but addresses the complete phase diagram. For the three component fermions, the flow equations in the few-body regime show a limit-cycle scaling and the Efimov tower of three-body bound states. Applied to the case of Lithium they explain recently observed three-body loss features. Extending the calculations by continuity to nonzero density, it is found that a new trion phase separates a BCS and a BEC phase for three component fermions close to a common resonance. More formal is the derivation of a new exact flow equation for scale dependent composite operators. This equation allows for example a better treatment of bound states.