Do you want to publish a course? Click here

The Influence of Host Star Spectral Type on Ultra-Hot Jupiter Atmospheres

128   0   0.0 ( 0 )
 Added by Joshua Lothringer
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ultra-hot Jupiters are the most highly irradiated gas giant planets, with equilibrium temperatures from 2000 to over 4000 K. Ultra-hot Jupiters are amenable to characterization due to their high temperatures, inflated radii, and short periods, but their atmospheres are atypical for planets in that the photosphere possesses large concentrations of atoms and ions relative to molecules. Here we evaluate how the atmospheres of these planets respond to irradiation by stars of different spectral type. We find that ultra-hot Jupiters exhibit temperature



rate research

Read More

[Abridged] A key hypothesis in the field of exoplanet atmospheres is the trend of atmospheric thermal structure with planetary equilibrium temperature. We explore this trend and report here the first statistical detection of a transition in the near-infrared (NIR) atmospheric emission between hot and ultra-hot Jupiters. We measure this transition using secondary eclipse observations and interpret this phenomenon as changes in atmospheric properties, and more specifically in terms of transition from non-inverted to inverted thermal profiles. We examine a sample of 78 hot Jupiters with secondary eclipse measurements at 3.6 {mu}m and 4.5 {mu}m measured with Spitzer Infrared Array Camera (IRAC). We measure the deviation of the data from the blackbody, which we define as the difference between the observed 4.5 {mu}m eclipse depth and that expected at this wavelength based on the brightness temperature measured at 3.6 {mu}m. We study how the deviation between 3.6 and 4.5 {mu}m changes with theoretical predictions with equilibrium temperature and incoming stellar irradiation. We reveal a clear transition in the observed emission spectra of the hot Jupiter population at 1660 +/- 100 K in the zero albedo, full redistribution equilibrium temperature. We find the hotter exoplanets have even hotter daysides at 4.5 {mu}m compared to 3.6 {mu}m, which manifests as an exponential increase in the emitted power of the planets with stellar insolation. We propose that the measured transition is a result of seeing carbon monoxide in emission due to the formation of temperature
Ultra-hot Jupiters offer interesting prospects for expanding our theories on dynamical evolution and the properties of extremely irradiated atmospheres. In this context, we present the analysis of new optical spectroscopy for the transiting ultra-hot Jupiter WASP-121b. We first refine the orbital properties of WASP-121b, which is on a nearly polar (obliquity $psi^{rm North}$=88.1$pm$0.25$^{circ}$ or $psi^{rm South}$=91.11$pm$0.20$^{circ}$) orbit, and exclude a high differential rotation for its fast-rotating (P$<$1.13 days), highly inclined ($i_mathrm{star}^{rm North}$=8.1$stackrel{+3.0}{_{-2.6}}^{circ}$ or $i_mathrm{star}^{rm South}$=171.9$stackrel{+2.5}{_{-3.4}}^{circ}$) star. We then present a new method that exploits the reloaded Rossiter-McLaughlin technique to separate the contribution of the planetary atmosphere and of the spectrum of the stellar surface along the transit chord. Its application to HARPS transit spectroscopy of WASP-121b reveals the absorption signature from metals, likely atomic iron, in the planet atmospheric limb. The width of the signal (14.3$pm$1.2 km/s) can be explained by the rotation of the tidally locked planet. Its blueshift (-5.2$pm$0.5 km/s) could trace strong winds from the dayside to the nightside, or the anisotropic expansion of the planetary thermosphere.
In this work we study the effect of disequilibrium processes on mixing ratio profiles of neutral species and on the simulated spectra of a hot Jupiter exoplanet that orbits stars of different spectral types. We also address the impact of stellar activity that should be present to a different degree in all stars with convective envelopes. We used the VULCAN chemical kinetic code to compute number densities of species. The temperature-pressure profile of the atmosphere was computed with the HELIOS code. We also utilized the $tau$-ReX forward model to predict the spectra of planets in primary and secondary eclipses. In order to account for the stellar activity we made use of the observed solar XUV spectrum taken from Virtual Planetary Laboratory (VPL) as a proxy for an active sun-like star. We find large changes in mixing ratios of most chemical species in planets orbiting A-type stars that radiate strong XUV flux inducing a very effective photodissociation. For some species, these changes can propagate very deep into the planetary atmosphere to pressures of around 1 bar. To observe disequilibrium chemistry we favor hot Jupiters with temperatures Teq=1000 K and ultra-hot Jupiters with Teq=3000$ K that also have temperature inversion in their atmospheres. On the other hand, disequilibrium calculations predict little changes in spectra of planets with intermediate temperatures. We also show that stellar activity similar to the one of the modern Sun drives important changes in mixing ratio profiles of atmospheric species. However, these changes take place at very high atmospheric altitudes and thus do not affect predicted spectra. We estimate that the effect of disequilibrium chemistry in planets orbiting nearby bright stars could be robustly detected and studied with future missions with spectroscopic capabilities in infrared such as, e.g., JWST and ARIEL.
Radiative transfer in planetary atmospheres is usually treated in the static limit, i.e., neglecting atmospheric motions. We argue that hot Jupiter atmospheres, with possibly fast (sonic) wind speeds, may require a more strongly coupled treatment, formally in the regime of radiation-hydrodynamics. To lowest order in v/c, relativistic Doppler shifts distort line profiles along optical paths with finite wind velocity gradients. This leads to flow-dependent deviations in the effective emission and absorption properties of the atmospheric medium. Evaluating the overall impact of these distortions on the radiative structure of a dynamic atmosphere is non-trivial. We present transmissivity and systematic equivalent width excess calculations which suggest possibly important consequences for radiation transport in hot Jupiter atmospheres. If winds are fast and bulk Doppler shifts are indeed important for the global radiative balance, accurate modeling and reliable data interpretation for hot Jupiter atmospheres may prove challenging: it would involve anisotropic and dynamic radiative transfer in a coupled radiation-hydrodynamical flow. On the bright side, it would also imply that the emergent properties of hot Jupiter atmospheres are more direct tracers of their atmospheric flows than is the case for Solar System planets. Radiation-hydrodynamics may also influence radiative transfer in other classes of hot exoplanetary atmospheres with fast winds.
For most hot Jupiters around main-sequence Sun-like stars, tidal torques are expected to transfer angular momentum from the planets orbit to the stars rotation. The timescale for this process is difficult to calculate, leading to uncertainties in the history of orbital evolution of hot Jupiters. We present evidence for tidal spin-up by taking advantage of recent advances in planet detection and host-star characterization. We compared the projected rotation velocities and rotation periods of Sun-like stars with hot Jupiters and spectroscopically similar stars with (i) wider-orbiting giant planets, and (ii) less massive planets. The hot Jupiter hosts tend to spin faster than the stars in either of the control samples. Reinforcing earlier studies, the results imply that hot Jupiters alter the spins of their host stars while they are on the main sequence, and that the ages of hot-Jupiter hosts cannot be reliably determined using gyrochronology.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا