Do you want to publish a course? Click here

Expected resurgences and symbolic powers of ideals

105   0   0.0 ( 0 )
 Added by Elo\\'isa Grifo
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We give explicit criteria that imply the resurgence of a self-radical ideal in a regular ring is strictly smaller than its codimension, which in turn implies that the stable version of Harbournes conjecture holds for such ideals. This criterion is used to give several explicit families of such ideals, including the defining ideals of space monomial curves. Other results generalize known theorems concerning when the third symbolic power is in the square of an ideal, and a strong resurgence bound for some classes of space monomial curves.



rate research

Read More

Let $A = K[X_1,ldots, X_d]$ and let $I$, $J$ be monomial ideals in $A$. Let $I_n(J) = (I^n colon J^infty)$ be the $n^{th}$ symbolic power of $I$ wrt $J$. It is easy to see that the function $f^I_J(n) = e_0(I_n(J)/I^n)$ is of quasi-polynomial type, say of period $g$ and degree $c$. For $n gg 0$ say [ f^I_J(n) = a_c(n)n^c + a_{c-1}(n)n^{c-1} + text{lower terms}, ] where for $i = 0, ldots, c$, $a_i colon mathbb{N} rt mathbb{Z}$ are periodic functions of period $g$ and $a_c eq 0$. In an earlier paper we (together with Herzog and Verma) proved that $dim I_n(J)/I^n$ is constant for $n gg 0$ and $a_c(-)$ is a constant. In this paper we prove that if $I$ is generated by some elements of the same degree and height $I geq 2$ then $a_{c-1}(-)$ is also a constant.
In this article, we prove that for several classes of graphs, the Castelnuovo-Mumford regularity of symbolic powers of their edge ideals coincide with that of their ordinary powers.
In this paper, we compute the regularity and Hilbert series of symbolic powers of the cover ideal of a graph $G$ when $G$ is either a crown graph or a complete multipartite graph. We also compute the multiplicity of symbolic powers of cover ideals in terms of the number of edges.
Let $mathcal{D}$ be a weighted oriented graph and $I(mathcal{D})$ be its edge ideal. In this paper, we show that all the symbolic and ordinary powers of $I(mathcal{D})$ coincide when $mathcal{D}$ is a weighted oriented certain class of tree. Finally, we give necessary and sufficient conditions for the equality of ordinary and symbolic powers of naturally oriented lines.
We compute the Betti numbers for all the powers of initial and final lexsegment edge ideals. For the powers of the edge ideal of an anti-$d-$path, we prove that they have linear quotients and we characterize the normally torsion-free ideals. We determine a class of non-squarefree ideals, arising from some particular graphs, which are normally torsion-free.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا