Do you want to publish a course? Click here

Imaging cytometry without image reconstruction (ghost cytometry)

271   0   0.0 ( 0 )
 Added by Issei Sato
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Imaging and analysis of many single cells hold great potential in our understanding of heterogeneous and complex life systems and in enabling biomedical applications. We here introduce a recently realized image-free imaging cytometry technology, which we call ghost cytometry. While a compressive ghost imaging technique utilizing objects motion relative to a projected static light pattern allows recovery of their images, a key of this ghost cytometry is to achieve ultrafast cell classification by directly applying machine learning methods to the compressive imaging signals in a temporal domain. We show the applicability of our method in the analysis of flowing objects based on the reconstructed images as well as in that based on the imaging waveform without image production.



rate research

Read More

366 - Issei Sato 2019
Computational ghost imaging is an imaging technique in which an object is imaged from light collected using a single-pixel detector with no spatial resolution. Recently, ghost cytometry has been proposed for a high-speed cell-classification method that involves ghost imaging and machine learning in flow cytometry. Ghost cytometry skips the reconstruction of cell images from signals and directly used signals for cell-classification because this reconstruction is what creates the bottleneck in the high-speed analysis. In this paper, we provide theoretical analysis for learning from ghost imaging without imaging.
We introduce an image cytometer (I-CYT) for the analysis of phytoplankton in fresh and marine water environments. A linear quantification of cell numbers was observed covering several orders of magnitude using cultures of Tetraselmis and Nannochloropsis measured by autofluorescence in a laboratory environment. We assessed the functionality of the system outside the laboratory by phytoplankton quantification of samples taken from a marine water environment (Dutch Wadden Sea, The Netherlands) and a fresh water environment (Lake Ijssel, The Netherlands). The I-CYT was also employed to study the effects of two ballast water treatment systems (BWTS), based on chlorine electrolysis and UV sterilization, with the analysis including the vitality of the phytoplankton. For comparative study and benchmarking of the I-CYT, a standard flow cytometer was used. Our results prove a limit of detection (LOD) of 10 cells/ml with an accuracy between 0.7 and 0.5 log, and a correlation of 88.29% in quantification and 96.21% in vitality, with respect to the flow cytometry results.
88 - Manon Costa 2017
In this paper we consider a statistical estimation problem known as atomic deconvolution. Introduced in reliability, this model has a direct application when considering biological data produced by flow cytometers. In these experiments, biologists measure the fluorescence emission of treated cells and compare them with their natural emission to study the presence of specific molecules on the cells surface. They observe a signal which is composed of a noise (the natural fluorescence) plus some additional signal related to the quantity of molecule present on the surface if any. From a statistical point of view, we aim at inferring the percentage of cells expressing the selected molecule and the probability distribution function associated with its fluorescence emission. We propose here an adap-tive estimation procedure based on a previous deconvolution procedure introduced by [vEGS08, GvES11]. For both estimating the mixing parameter and the mixing density automatically, we use the Lepskii method based on the optimal choice of a bandwidth using a bias-variance decomposition. We then derive some concentration inequalities for our estimators and obtain the convergence rates, that are shown to be minimax optimal (up to some log terms) in Sobolev classes. Finally, we apply our algorithm on simulated and real biological data.
Flow cytometry is a technology that rapidly measures antigen-based markers associated to cells in a cell population. Although analysis of flow cytometry data has traditionally considered one or two markers at a time, there has been increasing interest in multidimensional analysis. However, flow cytometers are limited in the number of markers they can jointly observe, which is typically a fraction of the number of markers of interest. For this reason, practitioners often perform multiple assays based on different, overlapping combinations of markers. In this paper, we address the challenge of imputing the high dimensional jointly distributed values of marker attributes based on overlapping marginal observations. We show that simple nearest neighbor based imputation can lead to spurious subpopulations in the imputed data, and introduce an alternative approach based on nearest neighbor imputation restricted to a cells subpopulation. This requires us to perform clustering with missing data, which we address with a mixture model approach and novel EM algorithm. Since mixture model fitting may be ill-posed, we also develop techniques to initialize the EM algorithm using domain knowledge. We demonstrate our approach on real flow cytometry data.
One of the key limitations in conventional deep learning based image reconstruction is the need for registered pairs of training images containing a set of high-quality groundtruth images. This paper addresses this limitation by proposing a novel unsupervised deep registration-augmented reconstruction method (U-Dream) for training deep neural nets to reconstruct high-quality images by directly mapping pairs of unregistered and artifact-corrupted images. The ability of U-Dream to circumvent the need for accurately registered data makes it widely applicable to many biomedical image reconstruction tasks. We validate it in accelerated magnetic resonance imaging (MRI) by training an image reconstruction model directly on pairs of undersampled measurements from images that have undergone nonrigid deformations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا