No Arabic abstract
Previous studies indicate that interplanetary small magnetic flux ropes (SMFRs) are manifestations of microflare-associated small coronal mass ejections (CMEs), and the hot material with high charge states heated by related microflares are found in SMFRs. Ordinary CMEs are frequently associated with prominence eruptions,and cool prominencematerialsare found within some magnetic clouds (MCs). Therefore, the predicted small CMEs may also be frequently associated with small prominence eruptions. In this work, we aim to search for cool prominence materials within SMFRs.We examined all the O5+ and Fe6+ fraction data obtained by the Advanced Composition Explorer spacecraft during 1998 to 2008 and found that 13 SMFRs might exhibit low-charge-state signatures of unusual O5+and/or Fe6+abundances.One of the 13 SMFRs also exhibited signatures of high ionic charge states. We also reported a SMFR with highFe6+ fraction, but the values of Fe6+is a little lower than the threshold defining unusualFe6+.However, the SDO/AIA observations confirmed that the progenitor CME of this SMFR is associated with a small eruptive prominence, and the observations also supported the prominence materials were embedded in the CME.These observations are at the edge of the capabilities of ACE/SWICS and it cannot be ruled out that they are solely caused by instrumental effects. If these observations are real, they provide new evidence for the conjecture that SMFRs are small-scale MCs but also imply that the connected small CMEs could be associated with flares and prominence eruptions.
Coronal mass ejections (CMEs) are intense solar explosive eruptions, and they are frequently correlated with prominence eruptions. Previous observations show that about $70%$ of CMEs are associated with prominence eruptions. However, there are only a handful of reported observations of prominence plasma materials within interplanetary CMEs (ICMEs), which are the interplanetary manifestations of CMEs. Moreover, approximately $4%$ of ICMEs exhibit the presence of prominence materials, and approximately $12%$ of magnetic clouds (MCs) contain prominence materials. We aim to comprehensively search for cold prominence materials in MCs observed by the Advanced Composition Explorer (ACE) spacecraft during 1998-2007. Using the criteria of unusual $O^{5+}$ and (or) $Fe^{6+}$ abundances, we examined 76 MCs observed by ACE during 1998-2007 to search for cold prominence materials. Our results revealed that out of the 76 MCs, 27 ($36%$) events contained prominence material regions with low-charge-state signatures. Although the fraction is still lower than the approximately $70%$ of CMEs associated with prominence eruptions, it is much higher than $12%$. The unusual $O^{5+}$ and (or) $Fe^{6+}$ abundances may be simple and reliable criteria to investigate prominence materials in the interplanetary medium.
Small interplanetary magnetic flux ropes (SIMFRs) are often detected by space satellites in the interplanetary space near 1 AU. These ropes can be fitted by a cylindrically symmetric magnetic model. The durations of SIMFRsare usually <12 h, and the diameters of SIMFRsare <0.20 AU and show power law distribution. Most SIMFRs are observed in the typically slow solar wind (<500 km/s), and only several events are observed with high speed (>700 km/s). Some SIMFRs demonstrate abnormal heavy ion compositions, such as abnormally high He abundance, abnormally high average iron ionization, and enhanced O7+ abundance. These SIMFRs originate from remarkablyhot coronal origins. Approximately 74.5% SIMFRs exhibit counterstreamingsuprathermal electron signatures. Given their flux rope configuration, SIMFRs are potentially more effective for substorms. SIMFRs and magnetic clouds havemany similar observational properties but also show some different observations.These similar properties may indicate that SIMFRs are the interplanetary counterparts of small coronal mass ejections. Some direct bodies of evidence have confirmed that several SIMFRs areinterplanetary counterparts of CMEs. However, their different properties may imply that some SIMFRs haveinterplanetary origins. Therefore, one of the main aims of future research on SIMFRs is to determine whether SIMFRs originate from two different sources, that is, some events are formed in the solar coronal atmosphere, whereas others originate from the interplanetary space. Finally, in this study, we offer some prospects that shouldbe addressed in the future.
Coronal mass ejections (CMEs) are intense solar explosive eruptions. CMEs are highly important players in solar-terrestrial relationships, and they have important consequences for major geomagnetic storms and energetic particle events. It has been unclear how CMEs evolve when they propagate in the heliosphere. Here we report an interplanetary coronal mass ejection (ICME) consisting of multiple magnetic flux ropes measured by WIND on March 25-26, 1998. These magnetic flux ropes were merging with each other. The observations indicate that internal interactions (reconnections) within multi-flux-rope CME can coalesce into large-scale ropes, which may improve our understanding of the interplanetary evolution of CMEs. In addition, we speculated that the reported rope-rope interactions may also exist between successive rope-like CMEs and are important for the space weather forecasting.
Small-scale magnetic flux ropes (SFRs) are a type of structures in the solar wind that possess helical magnetic field lines. In a recent report (Chen & Hu 2020), we presented the radial variations of the properties of SFR from 0.29 to 8 au using in situ measurements from the Helios, ACE/Wind, Ulysses, and Voyager spacecraft. With the launch of the Parker Solar Probe (PSP), we extend our previous investigation further into the inner heliosphere. We apply a Grad-Shafranov-based algorithm to identify SFRs during the first two PSP encounters. We find that the number of SFRs detected near the Sun is much less than that at larger radial distances, where magnetohydrodynamic (MHD) turbulence may act as the local source to produce these structures. The prevalence of Alfvenic structures significantly suppresses the detection of SFRs at closer distances. We compare the SFR event list with other event identification methods, yielding a dozen well-matched events. The cross-section maps of two selected events confirm the cylindrical magnetic flux rope configuration. The power-law relation between the SFR magnetic field and heliocentric distances seems to hold down to 0.16 au.
We report on the detailed and systematic study of field-line twist and length distributions within magnetic flux ropes embedded in Interplanetary Coronal Mass Ejections (ICMEs). The Grad-Shafranov reconstruction method is utilized together with a constant-twist nonlinear force-free (Gold-Hoyle) flux rope model to reveal the close relation between the field-line twist and length in cylindrical flux ropes, based on in-situ Wind spacecraft measurements. We show that the field-line twist distributions within interplanetary flux ropes are inconsistent with the Lundquist model. In particular we utilize the unique measurements of magnetic field-line lengths within selected ICME events as provided by Kahler et al. (2011) based on energetic electron burst observations at 1 AU and the associated type III radio emissions detected by the Wind spacecraft. These direct measurements are compared with our model calculations to help assess the flux-rope interpretation of the embedded magnetic structures. By using the different flux-rope models, we show that the in-situ direct measurements of field-line lengths are consistent with a flux-rope structure with spiral field lines of constant and low twist, largely different from that of the Lundquist model, especially for relatively large-scale flux ropes.