In previous work, we used an $infty$-categorical version of ultraproducts to show that, for a fixed height $n$, the symmetric monoidal $infty$-categories of $E_{n,p}$-local spectra are asymptotically algebraic in the prime $p$. In this paper, we prove the analogous result for the symmetric monoidal $infty$-categories of $K_{p}(n)$-local spectra, where $K_{p}(n)$ is Morava $K$-theory at height $n$ and the prime $p$. This requires $infty$-categorical tools suitable for working with compactly generated symmetric monoidal $infty$-categories with non-compact unit. The equivalences that we produce here are compatible with the equivalences for the $E_{n,p}$-local $infty$-categories.