Cosmic muon induced neutrons in Pb are measured by direct neutron detection, using CLYC detectors. The detector set-up and preliminary results are presented.
A measurement is presented of the neutron production rate in lead by high energy cosmic-ray muons at a depth of 2850 m water equivalent (w.e.) and a mean muon energy of 260 GeV. The measurement exploits the delayed coincidences between muons and the radiative capture of induced neutrons in a highly segmented tonne scale plastic scintillator detector. Detailed Monte Carlo simulations reproduce well the measured capture times and multiplicities and, within the dynamic range of the instrumentation, the spectrum of energy deposits. By comparing measurements with simulations of neutron capture rates a neutron yield in lead of (5.78^{+0.21}_{-0.28}) x 10^{-3} neutrons/muon/(g/cm^{2}) has been obtained. Absolute agreement between simulation and data is of order 25%. Consequences for deep underground rare event searches are discussed.
A new experiment to quantitatively measure neutrons induced by cosmic-ray muons in selected high-Z materials is introduced. The design of the Muon-Induced Neutron Indirect Detection EXperiment, MINIDEX, and the results from its first data taking period are presented as well as future plans. Neutron production in high-Z materials is of particular interest as such materials are used for shielding in low-background experiments. The design of next-generation large-scale experiments searching for neutrinoless double beta decay or direct interactions of dark matter requires reliable Monte Carlo simulations of background induced by muon interactions. The first five months of operation already provided a valuable data set on neutron production and neutron transport in lead. A first round of comparisons between MINIDEX data and Monte Carlo predictions obtained with two GEANT4- based packages is presented. The rate of muon-induced events is overall a factor three to four higher in data than predicted by the Monte Carlo packages. In addition, the time evolution of the muon-induced signal is not well described by the simulations.
The AC magnetic susceptibility is a fundamental method in materials science, which allows to probe the dynamic magnetic response of magnetic materials and superconductors. The LAMPS laboratory at the Laboratori Nazionali di Frascati of the INFN hosts an AC multi-harmonic magnetometer that allows performing experiments with an AC magnetic field ranging from 0.1 to 20 Gauss and in the frequency range from 17 to 2070 Hz. A DC magnetic field from 0 to 8 T produced by a superconducting magnet can be applied, while data may be collected in the temperature range 4.2-300 K using a liquid He cryostat under different temperature cycles setups. The first seven AC magnetic multi-harmonic susceptibility components can be measured with a magnetic sensitivity of 1x10-6 emu and a temperature precision of 0.01 K. Here we will describe in detail about schematic of the magnetometer, special attention will be dedicated to the instruments control, data acquisition framework and the user-friendly LabVIEW-based software platform.
China Jinping Underground Laboratory (CJPL) is ideal for studying solar-, geo-, and supernova neutrinos. A precise measurement of the cosmic-ray background would play an essential role in proceeding with the R&D research for these MeV-scale neutrino experiments. Using a 1-ton prototype detector for the Jinping Neutrino Experiment (JNE), we detected 264 high-energy muon events from a 645.2-day dataset at the first phase of CJPL (CJPL-I), reconstructed their directions, and measured the cosmic-ray muon flux to be $(3.53pm0.22_{text{stat.}}pm0.07_{text{sys.}})times10^{-10}$ cm$^{-2}$s$^{-1}$. The observed angular distributions indicate the leakage of cosmic-ray muon background and agree with the simulation accounting for Jinping mountains terrain. A survey of muon fluxes at different laboratory locations situated under mountains and below mine shaft indicated that the former is generally a factor of $(4pm2)$ larger than the latter with the same vertical overburden. This study provides a convenient back-of-the-envelope estimation for muon flux of an underground experiment.
We report the measurement of muons and muon-induced phosphorescence in DM-Ice17, a NaI(Tl) direct detection dark matter experiment at the South Pole. Muon interactions in the crystal are identified by their observed pulse shape and large energy depositions. The measured muon rate in DM-Ice17 is 2.93 +/- 0.04 muons/crystal/day with a modulation amplitude of 12.3 +/- 1.7%, consistent with expectation. Following muon interactions, we observe long-lived phosphorescence in the NaI(Tl) crystals with a decay time of 5.5 +/- 0.5 s. The prompt energy deposited by a muon is correlated to the amount of delayed phosphorescence, the brightest of which consist of tens of millions of photons. These photons are distributed over tens of seconds with a rate and arrival timing that do not mimic a scintillation signal above 2 keVee. While the properties of phosphorescence vary among individual crystals, the annually-modulating signal observed by DAMA cannot be accounted for by phosphorescence with the characteristics observed in DM-Ice17.