No Arabic abstract
We present optical, UV and X-ray monitoring of the short orbital period black hole X-ray binary candidate Swift J1753.5-0127, focusing on the final stages of its 12$-$year long outburst that started in 2005. From September 2016 onward, the source started to fade and within three months, the optical flux almost reached the quiescent level. Soon after that, using a new proposed rebrightening classification method we recorded a mini-outburst and a reflare in the optical light curves, peaking in February (V$rmsim$17.0) and May (V$rmsim$17.9) 2017, respectively. Remarkably, the mini-outburst has a peak flux consistent with the extrapolation of the slow decay before the fading phase preceding it. The following reflare was fainter and shorter. We found from optical colors that the temperature of the outer disk was $sim 11$,000 K when the source started to fade rapidly. According to the disk instability model, this is close to the critical temperature when a cooling wave is expected to form in the disk, shutting down the outburst. The optical color could be a useful tool to predict decay rates in some X-ray transients. We notice that all X-ray binaries that show mini-outbursts following a main outburst are short orbital period systems ($<$ 7 h). In analogy with another class of short period binaries showing similar mini-outbursts, the cataclysmic variables of the RZ LMi type, we suggest mini-outbursts could occur if there is a hot inner disk at the end of the outburst decay.
We present a spectral analysis of the black hole candidate and X-ray transient source Swift J1753.5 0127 making use of simultaneous observations of XMM-Newton and Rossi X-ray Timing Explorer (RXTE) in 2006, when the source was in outburst. The aim of this paper is to test whether a thermal component due to the accretion disc is present in the X-ray spectrum. We fit the data with a range of spectral models, and we find that for all of these models the fits to the X-ray energy spectra significantly require the addition of the disc black-body component. We also find a broad iron emission line at around 6.5 keV, most likely due to iron in the accretion disc. Our results confirm the existence of a cool inner disc extending near or close to the innermost circular orbit (ISCO).We further discovered broad emission lines of NVII and OVIII at ~ 0.52 keV and 0.65 keV, respectively in the RGS spectrum of Swift J1753.5-0127.
We present our monitoring campaign of the outburst of the black-hole candidate Swift J1753.5-0127, observed with the Rossi X-ray Timing Explorer and the Swift satellites. After ~4.5 years since its discovery, the source had a transition to the hard intermediate state. We performed spectral and timing studies of the transition showing that, unlike the majority of the transient black holes, the system did not go to the soft states but it returned to the hard state after a few months. During this transition Swift J1753.5-0127 features properties which are similar to those displayed by the black hole Cygnus X-1. We compared Swift J1753.5-0127 to one dynamically confirmed black hole and two neutron stars showing that its power spectra are in agreement with the binary hosting a black hole. We also suggest that the prolonged period at low flux that followed the initial flare is reminiscent of that observed in other X-ray binaries, as well as in cataclysmic variables.
We present preliminary results from the analysis of simultaneous multiwavelength observations of the black hole candidate Swift J1753.5-0127. The source is still continuing its outburst started in May 2005, never leaving the Low/Hard State. In the X-ray energy spectra we confirm evidence for a thermal component at a very low luminosity possibly extending close to but not at the innermost stable orbit. This is unusual for black hole candidates in the Low/Hard State. Furthermore, we confirm that its radio emission is significantly fainter than expected from the relation observed in other black hole candidates between the observed radio/X-ray fluxes.
We report on radio and X-ray monitoring observations of the BHC Swift J1753.5-0127 taken over a ~10 year period. Presented are daily radio observations at 15 GHz with the AMI-LA and X-ray data from Swift XRT and BAT. Also presented is a deep 2hr JVLA observation taken in an unusually low-luminosity soft-state (with a low disk temperature). We show that although the source has remained relatively radio-quiet compared to XRBs with a similar X-ray luminosity in the hard-state, the power-law relationship scales as $zeta=0.96pm0.06$ i.e. slightly closer to what has been considered for radiatively inefficient accretion disks. We also place the most stringent limit to date on the radio-jet quenching in an XRB soft-state, showing the connection of the jet quenching to the X-ray power-law component; the radio flux in the soft-state was found to be $<21~mu$Jy, which is a quenching factor of $gtrsim25$
We present time-resolved photometry of the optical counterpart to the black hole candidate Swift J1753.5-0127, which has remained in the low/hard X-ray state and bright at optical/IR wavelengths since its discovery in 2005. At the time of our observations Swift J1753.5-0127 does not show a decay trend but remains stable at R=16.45 with a night to night variability of ~0.05 mag. The R-band light curves, taken from 2007 June 3 to August 31, are not sinusoidal, but exhibit a complex morphology with remarkable changes in shape and amplitude. The best period determination is 3.2443+-0.0010 hours. This photometric period is likely a superhump period, slightly larger than the orbital period. Therefore, Swift J1753.5-0127 is the black hole candidate with the shortest orbital period observed to date. Our estimation of the distance is comparable to values previously published and likely places Swift J1753.5-0127 in the Galactic halo.