Do you want to publish a course? Click here

Bulge plus disc and Sersic decomposition catalogues for 16,908 galaxies in the SDSS Stripe 82 co-adds: A detailed study of the $ugriz$ structural measurements

162   0   0.0 ( 0 )
 Added by Connor Bottrell
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantitative characterization of galaxy morphology is vital in enabling comparison of observations to predictions from galaxy formation theory. However, without significant overlap between the observational footprints of deep and shallow galaxy surveys, the extent to which structural measurements for large galaxy samples are robust to image quality (e.g., depth, spatial resolution) cannot be established. Deep images from the Sloan Digital Sky Survey (SDSS) Stripe 82 co-adds provide a unique solution to this problem - offering $1.6-1.8$ magnitudes improvement in depth with respect to SDSS Legacy images. Having similar spatial resolution to Legacy, the co-adds make it possible to examine the sensitivity of parametric morphologies to depth alone. Using the Gim2D surface-brightness decomposition software, we provide public morphology catalogs for 16,908 galaxies in the Stripe 82 $ugriz$ co-adds. Our methods and selection are completely consistent with the Simard et al. (2011) and Mendel et al. (2014) photometric decompositions. We rigorously compare measurements in the deep and shallow images. We find no systematics in total magnitudes and sizes except for faint galaxies in the $u$-band and the brightest galaxies in each band. However, characterization of bulge-to-total fractions is significantly improved in the deep images. Furthermore, statistics used to determine whether single-Sersic or two-component (e.g., bulge+disc) models are required become more bimodal in the deep images. Lastly, we show that asymmetries are enhanced in the deep images and that the enhancement is positively correlated with the asymmetries measured in Legacy images.



rate research

Read More

94 - A. Cortesi , K. Saha , F.Ferrari 2021
This work is a Brazilian-Indian collaboration. It aims at investigating the structuralproperties of Lenticular galaxies in the Stripe 82 using a combination of S-PLUS (Southern Photometric Local Universe Survey) and SDSS data. S-PLUS is a noveloptical multi-wavelength survey which will cover nearly 8000 square degrees of the Southern hemisphere in the next years and the first data release covers the Stripe 82 area. The morphological classification and study of the galaxies stellar population will be performed combining the Bayesian Spectral type (from BPZ) and Morfometryka (MFMTK) parameters. BPZ and MFMTK are two complementary techniques, since the first one determines the most likely stellar population of a galaxy, in order to obtain its photometric redshift (phot-z), and the second one recovers non-parametric morphological quantities, such as asymmetries and concentration. The combination ofthe two methods allows us to explore the correlation between galaxies shapes (smooth, with spiral arms, etc.) and their stellar contents (old or young population). The preliminary results, presented in this work, show how this new data set opens a new window on our understanding of the nearby universe.
We present first results from our study of the properties of ~400 low redshift (z < 0.5) quasars, based on a large homogeneous dataset derived from the Stripe 82 area of the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7). For this sky region, deep (r~22.4) u,g,r,i,z images are available, up to ~2 mag deeper than standard SDSS images, allowing us to study both the host galaxies and the Mpc-scale environments of the quasars. This sample greatly outnumbers previous studies of low redshift quasar hosts, from the ground or from space. Here we report the preliminary results for the quasar host galaxies. We are able to resolve the host galaxy in ~80 % of the quasars. The quasar hosts are luminous and large, the majority of them in the range between M*-1 and M*-2, and with ~10 kpc galaxy scale-lengths. Almost half of the host galaxies are best fit with an exponential disk, while the rest are spheroid-dominated. There is a reasonable relation between the central black hole mass and the host galaxy luminosity.
By applying spectroscopic decomposition methods to a sample of MaNGA early-type galaxies, we separate out spatially and kinematically distinct stellar populations, allowing us to explore the similarities and differences between galaxy bulges and discs, and how they affect the global properties of the galaxy. We find that the components have interesting variations in their stellar populations, and display different kinematics. Bulges tend to be consistently more metal rich than their disc counterparts, and while the ages of both components are comparable, there is an interesting tail of younger, more metal poor discs. Bulges and discs follow their own distinct kinematic relationships, both on the plane of the stellar spin parameter, lambda_R, and ellipticity, and in the relation between stellar mass and specific angular momentum, j, with the location of the galaxy as a whole on these planes being determined by how much bulge and disc it contains. As a check of the physical significance of the kinematic decompositions, we also dynamically model the individual galaxy components within the global potential of the galaxy. The resulting components exhibit kinematic parameters consistent with those from the spectroscopic decomposition, and though the dynamical modelling suffers from some degeneracies, the bulges and discs display systematically different intrinsic dynamical properties. This work demonstrates the value in considering the individual components of galaxies rather than treating them as a single entity, which neglects information that may be crucial in understanding where, when and how galaxies evolve into the systems we see today.
We obtained optical spectroscopy of close (< 80 kpc) companion objects of a sample of 12 low redshift quasars (z < 0.3 ) selected from the SDSS Stripe82 area and that are in the subsample of 52 QSOs for which both multicolor host galaxies properties and galaxy environment was recently investigated in detail. We found that for 8 out of 12 sources the companion galaxy is associated to the QSO having a difference of radial velocity that is less than 400 km/s. Many of these associated companions exhibit [OII] $lambda$3727 AA~ emission lines suggestive of episodes of (recent) star formation possibly induced by past interactions. The SFR of the companion galaxies as derived from [OII] line luminosity is, however, modest, with a median value of 1.0 +-0.8 M_sun/yr, and the emission lines are barely consistent with expectation from gas ionization by the QSO. The role of the QSO for inducing star formation in close companion galaxies appears meager. For three objects we also detect the starlight spectrum of the QSO host galaxy which is characterized by absorption lines of old stellar population and [OII] emission line.
A new method for spectroscopic bulge-disc decomposition is presented, in which the spatial light profile in a two-dimensional spectrum is decomposed wavelength-by-wavelength into bulge and disc components, allowing separate one-dimensional spectra for each component to be constructed. This method has been applied to observations of a sample of nine S0s in the Fornax Cluster in order to obtain clean high-quality spectra of their individual bulge and disc components. So far this decomposition has only been fully successful when applied to galaxies with clean light profiles, consequently limiting the number of galaxies that could be separated into bulge and disc components. Lick index stellar population analysis of the component spectra reveals that in those galaxies where the bulge and disc could be distinguished, the bulges have systematically higher metallicities and younger stellar populations than the discs. This correlation is consistent with a picture in which S0 formation comprises the shutting down of star formation in the disc accompanied by a final burst of star formation in the bulge. The variation in spatial-fit parameters with wavelength also allows us to measure approximate colour gradients in the individual components. Such gradients were detected separately in both bulges and discs, in the sense that redder light is systematically more centrally concentrated in all components. However, a search for radial variations in the absorption line strengths determined for the individual components revealed that they are absent from the vast majority of S0 discs and bulges. The absence of gradients in line indices for most galaxies implies that the colour gradient cannot be attributed to age or metallicity variations, and is therefore most likely associated with varying degrees of obscuration by dust.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا