The chiral symmetry of QCD requires energy-dependent pionic strong interactions at low energies. This constraint, however, is not fulfilled by the usual Breit--Wigner parameterization of pionic resonances, leading to masses larger than the real ones. We derive relations between nonleptonic three-body decays of the $B$-meson into a $D$-meson and a pair of light pseudoscalar mesons based on SU(3) chiral symmetry. Employing effective field theory methods, we demonstrate that taking into account the final-state interactions, the experimental data of the decays $B^-to D^+pi^-pi^-$, $B_s^0to bar{D}^0K^-pi^+$, $B^0tobar{D}^0pi^-pi^+$, $B^-to D^+pi^-K^-$ and $B^0tobar{D}^0pi^-K^+$ can all be described by the nonperturbative $pi/eta/K$-$D/D_s$ scattering amplitudes previously obtained from a combination of chiral effective field theory and lattice QCD calculations. The results provide a strong support of the scenario that the broad scalar charmed meson $D^ast_0(2400)$ should be replaced by two states, the lower one of which has a mass of around 2.1 GeV, much smaller than that extracted from experimental data using a Breit--Wigner parameterization.