Do you want to publish a course? Click here

On some classes of irreducible polynomials

102   0   0.0 ( 0 )
 Added by Jaime Gutierrez
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

The aim of the paper is to produce new families of irreducible polynomials, generalizing previous results in the area. One example of our general result is that for a near-separated polynomial, i.e., polynomials of the form $F(x,y)=f_1(x)f_2(y)-f_2(x)f_1(y)$, then $F(x,y)+r$ is always irreducible for any constant $r$ different from zero. We also provide the biggest known family of HIP polynomials in several variables. These are polynomials $p(x_1,ldots,x_n) in K[x_1,ldots,x_n]$ over a zero characteristic field $K$ such that $p(h_1(x_1),ldots,h_n(x_n))$ is irreducible over $K$ for every $n$-tuple $h_1(x_1),ldots,h_n(x_n)$ of non constant one variable polynomials over $K$. The results can also be applied to fields of positive characteristic, with some modifications.



rate research

Read More

175 - Andrei K. Svinin 2013
We introduce two classes of discrete polynomials and construct discrete equations admitting a Lax representation in terms of these polynomials. Also we give an approach which allows to construct lattice integrable hierarchies in its explicit form and show some examples.
259 - Xiaogang Liu 2019
Let $mathbb{F}_q$ denote the finite fields with $q$ elements. The permutation behavior of several classes of infinite families of permutation polynomials over finite fields have been studied in recent years. In this paper, we continue with their studies, and get some further results about the permutation properties of the permutation polynomials. Also, some new classes of permutation polynomials are constructed. For these, we alter the coefficients, exponents or the underlying fields, etc.
No polynomial-time algorithm is known to test whether a sparse polynomial G divides another sparse polynomial $F$. While computing the quotient Q=F quo G can be done in polynomial time with respect to the sparsities of F, G and Q, this is not yet sufficient to get a polynomial-time divisibility test in general. Indeed, the sparsity of the quotient Q can be exponentially larger than the ones of F and G. In the favorable case where the sparsity #Q of the quotient is polynomial, the best known algorithm to compute Q has a non-linear factor #G#Q in the complexity, which is not optimal. In this work, we are interested in the two aspects of this problem. First, we propose a new randomized algorithm that computes the quotient of two sparse polynomials when the division is exact. Its complexity is quasi-linear in the sparsities of F, G and Q. Our approach relies on sparse interpolation and it works over any finite field or the ring of integers. Then, as a step toward faster divisibility testing, we provide a new polynomial-time algorithm when the divisor has a specific shape. More precisely, we reduce the problem to finding a polynomial S such that QS is sparse and testing divisibility by S can be done in polynomial time. We identify some structure patterns in the divisor G for which we can efficiently compute such a polynomial~S.
Given a black box function to evaluate an unknown rational polynomial f in Q[x] at points modulo a prime p, we exhibit algorithms to compute the representation of the polynomial in the sparsest shifted power basis. That is, we determine the sparsity t, the shift s (a rational), the exponents 0 <= e1 < e2 < ... < et, and the coefficients c1,...,ct in Q{0} such that f(x) = c1(x-s)^e1+c2(x-s)^e2+...+ct(x-s)^et. The computed sparsity t is absolutely minimal over any shifted power basis. The novelty of our algorithm is that the complexity is polynomial in the (sparse) representation size, and in particular is logarithmic in deg(f). Our method combines previous celebrated results on sparse interpolation and computing sparsest shifts, and provides a way to handle polynomials with extremely high degree which are, in some sense, sparse in information.
132 - Yuning Yang , Qingzhi Yang 2011
In this paper, we mainly focus on how to generalize some conclusions from nonnegative irreducible tensors to nonnegative weakly irreducible tensors. To do so, a basic and important lemma is proven using new tools. First, we give the definition of stochastic tensors. Then we show that every nonnegative weakly irreducible tensor with spectral radius being one is diagonally similar to a unique weakly irreducible stochastic tensor. Based on it, we prove some important lemmas, which help us to generalize the results related. Some counterexamples are provided to show that some conclusions for nonnegative irreducible tensors do not hold for nonnegative weakly irreducible tensors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا