Do you want to publish a course? Click here

$alpha$-Dirac-harmonic maps from closed surfaces

108   0   0.0 ( 0 )
 Added by Jingyong Zhu
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

$alpha$-Dirac-harmonic maps are variations of Dirac-harmonic maps, analogous to $alpha$-harmonic maps that were introduced by Sacks-Uhlenbeck to attack the existence problem for harmonic maps from surfaces. For $alpha >1$, the latter are known to satisfy a Palais-Smale condtion, and so, the technique of Sacks-Uhlenbeck consists in constructing $alpha$-harmonic maps for $alpha >1$ and then letting $alpha to 1$. The extension of this scheme to Dirac-harmonic maps meets with several difficulties, and in this paper, we start attacking those. We first prove the existence of nontrivial perturbed $alpha$-Dirac-harmonic maps when the target manifold has nonpositive curvature. The regularity theorem then shows that they are actually smooth. By $varepsilon$-regularity and suitable perturbations, we can then show that such a sequence of perturbed $alpha$-Dirac-harmonic maps converges to a smooth nontrivial $alpha$-Dirac-harmonic map.



rate research

Read More

126 - Jurgen Jost , Jingyong Zhu 2020
We study the existence of harmonic maps and Dirac-harmonic maps from degenerating surfaces to non-positive curved manifold via the scheme of Sacks and Uhlenbeck. By choosing a suitable sequence of $alpha$-(Dirac-)harmonic maps from a sequence of suitable closed surfaces degenerating to a hyperbolic surface, we get the convergence and a cleaner energy identity under the uniformly bounded energy assumption. In this energy identity, there is no energy loss near the punctures. As an application, we obtain an existence result about (Dirac-)harmonic maps from degenerating (spin) surfaces. If the energies of the map parts also stay away from zero, which is a necessary condition, both the limiting harmonic map and Dirac-harmonic map are nontrivial.
For a sequence of coupled fields ${(phi_n,psi_n)}$ from a compact Riemann surface $M$ with smooth boundary to a general compact Riemannian manifold with uniformly bounded energy and satisfying the Dirac-harmonic system up to some uniformly controlled error terms, we show that the energy identity holds during a blow-up process near the boundary. As an application to the heat flow of Dirac-harmonic maps from surfaces with boundary, when such a flow blows up at infinite time, we obtain an energy identity.
Critical points of approximations of the Dirichlet energy `{a} la Sacks-Uhlenbeck are known to converge to harmonic maps in a suitable sense. However, we show that not every harmonic map can be approximated by critical points of such perturbed energies. Indeed, we prove that constant maps and the rotations of $S^2$ are the only critical points of $E_{alpha}$ for maps from $S^2$ to $S^2$ whose $alpha$-energy lies below some threshold. In particular, nontrivial dilations (which are harmonic) cannot arise as strong limits of $alpha$-harmonic maps.
Let ${u_n}$ be a sequence of maps from a compact Riemann surface $M$ with smooth boundary to a general compact Riemannian manifold $N$ with free boundary on a smooth submanifold $Ksubset N$ satisfying [ sup_n left(| abla u_n|_{L^2(M)}+|tau(u_n)|_{L^2(M)}right)leq Lambda, ] where $tau(u_n)$ is the tension field of the map $u_n$. We show that the energy identity and the no neck property hold during a blow-up process. The assumptions are such that this result also applies to the harmonic map heat flow with free boundary, to prove the energy identity at finite singular time as well as at infinity time. Also, the no neck property holds at infinity time.
In this paper we consider approximations introduced by Sacks-Uhlenbeck of the harmonic energy for maps from $S^2$ into $S^2$. We continue the analysis in [6] about limits of $alpha$-harmonic maps with uniformly bounded energy. Using a recent energy identity in [7], we obtain an optimal gap theorem for the $alpha$-harmonic maps of degree $-1, 0$ or $1$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا