Do you want to publish a course? Click here

Astro2020 Science White Paper: Black Hole Growth in Mergers and Dual AGN

374   0   0.0 ( 0 )
 Added by Michael Koss
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Hierarchical models of galaxy formation predict that galaxy mergers represent a significant transitional stage of rapid supermassive black hole (SMBH) growth. Yet, the connection between the merging process and enhanced active galactic nuclei (AGN) activity as well as the timescale of SMBH mergers remains highly uncertain. The breakthrough in reconciling the importance of galaxy mergers with black hole growth lies in a thoroughly-studied census of dual AGN across cosmic history, which will be enabled by next-generation observational capabilities, theoretical advances, and simulations. This white paper outlines the key questions in galaxy mergers, dual and offset AGN, and proposes multiwavelength solutions using future high-resolution observatories in the X-rays (AXIS, Lynx), near and mid-infrared (30 meter class telescopes, JWST), and submillimeter (ALMA).



rate research

Read More

Supermassive black holes are located at the center of most, if not all, massive galaxies. They follow close correlations with global properties of their host galaxies (scaling relations), and are thought to play a crucial role in galaxy evolution. Yet, we lack a complete understanding of fundamental aspects of their growth across cosmic time. In particular, we still do not understand: (1) whether black holes or their host galaxies grow faster and (2) what is the maximum mass that black holes can reach. The high angular resolution capability and sensitivity of 30-m class telescopes will revolutionize our understanding of the extreme end of the black hole and galaxy mass scale. With such facilities, we will be able to dynamically measure masses of the largest black holes and characterize galaxy properties out to redshift $z sim 1.5$. Together with the evolution of black hole-galaxy scaling relations since $z sim 1.5$, the maximum mass black hole will shed light on the main channels of black hole growth.
68 - Jenny E Greene 2019
We have compelling evidence for stellar-mass black holes (BHs) of ~5-80 M_sun that form through the death of massive stars. We also have compelling evidence for so-called supermassive BHs (10^5-10^10 M_sun) that are predominantly found in the centers of galaxies. We have very good reason to believe there must be BHs with masses in the gap between these ranges: the first ~10^9 M_sun BHs are observed only hundreds of millions of years after the Big Bang, and all theoretically viable paths to making supermassive BHs require a stage of intermediate mass. However, no BHs have yet been reliably detected in the 100-10}^5 M_sun mass range. Uncovering these intermediate-mass BHs of 10^3-10^5 M_sun is within reach in the coming decade. In this white paper we highlight the crucial role that 30-m class telescopes will play in dynamically detecting intermediate-mass black holes, should they exist.
238 - F. Tombesi (1 , 2 , 3 2019
Powerful winds driven by supermassive black holes (SMBHs) are likely the main mechanism through which SMBHs regulate their own growth and influence the host galaxy evolution. However, their origin and their capability to impact the large-scale environment are still highly debated. Fundamental results will come from high-energy and spatial resolution X-ray observatories.
Black holes in binary star systems are vital for understanding the process of pr oducing gravitational wave sources, understanding how supernovae work, and for p roviding fossil evidence for the high mass stars from earlier in the Universe. At the present time, sample sizes of these objects, and especially of black hole s in binaries, are quite limited. Furthermore, more precise measurements of the binary parameters are needed, as well. With improvements primarily in X-ray an d radio astronomy capabilities, it should be possible to build much larger sampl es of much better measured black hole binaries.
84 - Alexander P. Ji 2019
Nearby dwarf galaxies are local analogues of high-redshift and metal-poor stellar populations. Most of these systems ceased star formation long ago, but they retain signatures of their past that can be unraveled by detailed study of their resolved stars. Archaeological examination of dwarf galaxies with resolved stellar spectroscopy provides key insights into the first stars and galaxies, galaxy formation in the smallest dark matter halos, stellar populations in the metal-free and metal-poor universe, the nature of the first stellar explosions, and the origin of the elements. Extremely large telescopes with multi-object R=5,000-30,000 spectroscopy are needed to enable such studies for galaxies of different luminosities throughout the Local Group.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا