Previous research has attempted to minimize the influence of loss in reflection- and transmission-type acoustic metasurfaces. This letter shows that, by treating the acoustic metasurface as a non-Hermitian system and by harnessing loss, unconventional wave behaviors that do not exist in lossless metasurfaces can be uncovered. Specifically, we theoretically and experimentally demonstrate a non-Hermitian acoustic metasurface mirror featuring extremely asymmetrical reflection at the exception point. As an example, the metasurface mirror is designed to have high-efficiency retro-reflection when the wave incidents from one side and complete absorption when the wave incidents from the other side. This work marries conventional gradient index metasurfaces with the exception point from non-Hermitian systems, and paves the way for identifying new mechanisms and functionalities for wave manipulation.