Do you want to publish a course? Click here

The First Pulsar Discovered by FAST

430   0   0.0 ( 0 )
 Added by Lei Qian
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

To assist with the commissioning (Jiang et al. 2019) of the Five-hundred-meter Aperture Spherical radio Telescope (FAST), we performed a pulsar search, with the primary goal of developing and testing the pulsar data acquisition and processing pipelines. We tested and used three pipelines, two (P1 and P2 hereafter) searched for the periodic signature of pulsars whereas the other one was used to search for bright single pulses (P3 hereafter). A pulsar candidate was discovered in the observation on the 22nd August, 2017, and later confirmed by the Parkes radio telescope on the 10th September, 2017. This pulsar, named PSR J1900-0134, was the first pulsar discovered by FAST. The pulsar has a pulse period of 1.8 s and a dispersion measure (DM) of 188,pc,cm$^{-3}$.

rate research

Read More

64 - L. N. Driessen 2019
We report the discovery of the first transient with MeerKAT, MKT J170456.2$-$482100, discovered in ThunderKAT images of the low mass X-ray binary GX339$-$4. MKT J170456.2$-$482100 is variable in the radio, reaching a maximum flux density of $0.71pm0.11,mathrm{mJy}$ on 2019 Oct 12, and is undetected in 15 out of 48 ThunderKAT epochs. MKT J170456.2$-$482100 is coincident with the chromospherically active K-type sub-giant TYC 8332-2529-1, and $sim18,mathrm{years}$ of archival optical photometry of the star shows that it varies with a period of $21.25pm0.04,mathrm{days}$. The shape and phase of the optical light curve changes over time, and we detect both X-ray and UV emission at the position of MKT J170456.2$-$482100, which may indicate that TYC 8332-2529-1 has large star spots. Spectroscopic analysis shows that TYC 8332-2529-1 is in a binary, and has a line-of-sight radial velocity amplitude of $43,mathrm{km,s^{-1}}$. We also observe a spectral feature in anti-phase with the K-type sub-giant, with a line-of-sight radial velocity amplitude of $sim12pm10,mathrm{km,s^{-1}}$, whose origins cannot currently be explained. Further observations and investigation are required to determine the nature of the MKT J170456.2$-$482100 system.
We present the discovery of 24 pulsars in 15 Globular Clusters (GCs) using the Five-hundred-meter Aperture Spherical radio Telescope (FAST). These include the first pulsar discoveries in M2, M10, and M14. Most of the new systems are either confirmed or likely members of binary systems. M53C, NGC6517H and I are the only three pulsars confirmed to be isolated. M14A is a black widow pulsar with an orbital period of 5.5 hours and a minimum companion mass of 0.016 Ms. M14E is an eclipsing binary pulsar with an orbital period of 20.3 hours. With the other 8 discoveries that have been reported elsewhere, in total 32 GC pulsars have been discovered by FAST so far. In addition, We detected M3A twice. This was enough to determine that it is a black widow pulsar with an orbital period of 3.3 hours and a minimum companion mass of 0.0125 Ms.
We have developed a digital fast Fourier transform (FFT) spectrometer made of an analog-to-digital converter (ADC) and a field-programmable gate array (FPGA). The base instrument has independent ADC and FPGA modules, which allow us to implement different spectrometers in a relatively easy manner. Two types of spectrometers have been instrumented, one with 4.096 GS/s sampling speed and 2048 frequency channels and the other with 2.048 GS/s sampling speed and 32768 frequency channels. The signal processing in these spectrometers has no dead time and the accumulated spectra are recorded in external media every 8 ms. A direct sampling spectroscopy up to 8 GHz is achieved by a microwave track-and-hold circuit, which can reduce the analog receiver in front of the spectrometer. Highly stable spectroscopy with a wide dynamic range was demonstrated in a series of laboratory experiments and test observations of solar radio bursts.
513 - M. Cruces , D. J. Champion , D. Li 2021
We report the follow-up of 10 pulsars discovered by the Five-hundred-meter Aperture Spherical radio-Telescope (FAST) during its commissioning. The pulsars were discovered at a frequency of 500-MHz using the ultra-wide-band (UWB) receiver in drift-scan mode, as part of the Commensal Radio Astronomy FAST Survey (CRAFTS). We carried out the timing campaign with the 100-m Effelsberg radio-telescope at L-band around 1.36 GHz. Along with 11 FAST pulsars previously reported, FAST seems to be uncovering a population of older pulsars, bordering and/or even across the pulsar death-lines. We report here two sources with notable characteristics. PSR J1951$+$4724 is a young and energetic pulsar with nearly 100% of linearly polarized flux density and visible up to an observing frequency of 8 GHz. PSR J2338+4818, a mildly recycled pulsar in a 95.2-d orbit with a Carbon-Oxygen white dwarf (WD) companion of $gtrsim 1rm{M}_{odot}$, based on estimates from the mass function. This system is the widest WD binary with the most massive companion known to-date. Conspicuous discrepancy was found between estimations based on NE2001 and YMW16 electron density models, which can be attributed to under-representation of pulsars in the sky region between Galactic longitudes $70^o<l<100^o$. This work represents one of the early CRAFTS results, which start to show potential to substantially enrich the pulsar sample and refine the Galactic electron density model.
Besides the astrometric mission of the Gaia satellite, its repeated and high-precision measurements serve also as an all-sky photometric transient survey. The sudden brightenings of the sources are published as Gaia Photometric Science Alerts and are made publicly available allowing the community to photometrically and spectroscopically follow-up the object. The goal of this paper was to analyze the nature and derive the basic parameters of Gaia18aen, transient detected at the beginning of 2018. It coincides with the position of the emission line star WRAY 15-136. The brightening was classified as a nova? on the basis of subsequent spectroscopic observation. We have analyzed two spectra of Gaia18aen and collected the available photometry of the object covering the brightenings in 2018 and also the preceding and following periods of quiescence. Based on this observational data, we have derived the parameters of Gaia18aen and discussed the nature of the object. Gaia18aen is the first symbiotic star discovered by the Gaia satellite. The system is an S-type symbiotic star and consists of an M giant of a slightly super-solar metallicity, with Teff ~3500 K, a radius of ~230 R$odot$, and a high luminosity L ~7400 L$odot$. The hot component is a hot white dwarf. We tentatively determined the orbital period of the system ~487 days. The main outburst of Gaia18aen in 2018 was accompanied by a decrease in the temperature of the hot component. The first phase of the outburst was characterized by the high luminosity L ~27000 L$odot$, which remained constant for about three weeks after the optical maximum, later followed by the gradual decline of luminosity and increase of temperature. Several re-brightenings have been detected on the timescales of hundreds of days.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا