Do you want to publish a course? Click here

Water Distribution System Design Using Multi-Objective Particle Swarm Optimisation

63   0   0.0 ( 0 )
 Added by Mahesh Patil
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Application of the multi-objective particle swarm optimisation (MOPSO) algorithm to design of water distribution systems is described. An earlier MOPSO algorithm is augmented with (a) local search, (b) a modified strategy for assigning the leader, and (c) a modified mutation scheme. For one of the benchmark problems described in the literature, the effect of each of the above features on the algorithm performance is demonstrated. The augmented MOPSO algorithm (called MOPSO+) is applied to five benchmark problems, and in each case, it finds non-dominated solutions not reported earlier. In addition, for the purpose of comparing Pareto fronts (sets of non-dominated solutions) obtained by different algorithms, a new criterion is suggested, and its usefulness is pointed out with an example. Finally, some suggestions regarding future research directions are made.



rate research

Read More

We consider an optimization deployment problem of multistatic radar system (MSRS). Through the antenna placing and the transmitted power allocating, we optimally deploy the MSRS for two goals: 1) the first one is to improve the coverage ratio of surveillance region; 2) the second goal is to get a even distribution of signal energy in surveillance region. In two typical working modes of MSRS, we formulate the optimization problem by introducing two objective functions according to the two mentioned goals, respectively. Addressing on two main challenges of applying multi-objective particle swarm optimization (MOPSO) in solving the proposed optimization problem, we propose a deployment algorithm based on multiobjective particle swarm optimization with non-dominated relative crowding distance (MOPSO-NRCD). For the challenge of value difference, we propose a novel selection method with a non-dominated relative crowding distance. For the challenge of particle allocation, a multi-swarm structure of MOPSO is also introduced. Finally, simulation results are given out to prove the advantages and validity of the proposed deployment algorithm. It is shown that with same number of employed particles, the proposed MOPSO-NRCD algorithm can achieve better optimization performance than that of traditional multiobjective particle swarm optimization with crowding distance (MOPSO-CD).
Most existing swarm pattern formation methods depend on a predefined gene regulatory network (GRN) structure that requires designers priori knowledge, which is difficult to adapt to complex and changeable environments. To dynamically adapt to the complex and changeable environments, we propose an automatic design framework of swarm pattern formation based on multi-objective genetic programming. The proposed framework does not need to define the structure of the GRN-based model in advance, and it applies some basic network motifs to automatically structure the GRN-based model. In addition, a multi-objective genetic programming (MOGP) combines with NSGA-II, namely MOGP-NSGA-II, to balance the complexity and accuracy of the GRN-based model. In evolutionary process, an MOGP-NSGA-II and differential evolution (DE) are applied to optimize the structures and parameters of the GRN-based model in parallel. Simulation results demonstrate that the proposed framework can effectively evolve some novel GRN-based models, and these GRN-based models not only have a simpler structure and a better performance, but also are robust to the complex and changeable environments.
The in situ measurement of the particle size distribution (PSD) of a suspension of particles presents huge challenges. Various effects from the process could introduce noise to the data from which the PSD is estimated. This in turn could lead to the occurrence of artificial peaks in the estimated PSD. Limitations in the models used in the PSD estimation could also lead to the occurrence of these artificial peaks. This could pose a significant challenge to in situ monitoring of particulate processes, as there will be no independent estimate of the PSD to allow a discrimination of the artificial peaks to be carried out. Here, we present an algorithm which is capable of discriminating between artificial and true peaks in PSD estimates based on fusion of multiple data streams. In this case, chord length distribution and laser diffraction data have been used. The data fusion is done by means of multi-objective optimisation using the weighted sum approach. The algorithm is applied to two different particle suspensions. The estimated PSDs from the algorithm are compared with offline estimates of PSD from the Malvern Mastersizer and Morphologi G3. The results show that the algorithm is capable of eliminating an artificial peak in a PSD estimate when this artificial peak is sufficiently displaced from the true peak. However, when the artificial peak is too close to the true peak, it is only suppressed but not completely eliminated.
Intrusion Detection Systems (IDS) are developed to protect the network by detecting the attack. The current paper proposes an unsupervised feature selection technique for analyzing the network data. The search capability of the non-dominated sorting genetic algorithm (NSGA-II) has been employed for optimizing three different objective functions utilizing different information theoretic measures including mutual information, standard deviation, and information gain to identify mutually exclusive and a high variant subset of features. Finally, the Pareto optimal front of the different optimal feature subsets are obtained and these feature subsets are utilized for developing classification systems using different popular machine learning models like support vector machines, decision trees and k-nearest neighbour (k=5) classifier etc. We have evaluated the results of the algorithm on KDD-99, NSL-KDD and Kyoto 2006+ datasets. The experimental results on KDD-99 dataset show that decision tree provides better results than other available classifiers. The proposed system obtains the best results of 99.78% accuracy, 99.27% detection rate and false alarm rate of 0.2%, which are better than all the previous results for KDD dataset. We achieved an accuracy of 99.83% for 20% testing data of NSL-KDD dataset and 99.65% accuracy for 10-fold cross-validation on Kyoto dataset. The most attractive characteristic of the proposed scheme is that during the selection of appropriate feature subset, no labeled information is utilized and different feature quality measures are optimized simultaneously using the multi-objective optimization framework.
123 - T. Serizawa , H. Fujita 2020
Convolutional neural network (CNN) is one of the most frequently used deep learning techniques. Various forms of models have been proposed and improved for learning at CNN. When learning with CNN, it is necessary to determine the optimal hyperparameters. However, the number of hyperparameters is so large that it is difficult to do it manually, so much research has been done on automation. A method that uses metaheuristic algorithms is attracting attention in research on hyperparameter optimization. Metaheuristic algorithms are naturally inspired and include evolution strategies, genetic algorithms, antcolony optimization and particle swarm optimization. In particular, particle swarm optimization converges faster than genetic algorithms, and various models have been proposed. In this paper, we propose CNN hyperparameter optimization with linearly decreasing weight particle swarm optimization (LDWPSO). In the experiment, the MNIST data set and CIFAR-10 data set, which are often used as benchmark data sets, are used. By optimizing CNN hyperparameters with LDWPSO, learning the MNIST and CIFAR-10 datasets, we compare the accuracy with a standard CNN based on LeNet-5. As a result, when using the MNIST dataset, the baseline CNN is 94.02% at the 5th epoch, compared to 98.95% for LDWPSO CNN, which improves accuracy. When using the CIFAR-10 dataset, the Baseline CNN is 28.07% at the 10th epoch, compared to 69.37% for the LDWPSO CNN, which greatly improves accuracy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا