No Arabic abstract
A main challenge in mining network-based data is finding effective ways to represent or encode graph structures so that it can be efficiently exploited by machine learning algorithms. Several methods have focused in network representation at node/edge or substructure level. However, many real life challenges such as time-varying, multilayer, chemical compounds and brain networks involve analysis of a family of graphs instead of single one opening additional challenges in graph comparison and representation. Traditional approaches for learning representations relies on hand-crafting specialized heuristics to extract meaningful information about the graphs, e.g statistical properties, structural features, etc. as well as engineered graph distances to quantify dissimilarity between networks. In this work we provide an unsupervised approach to learn embedding representation for a collection of graphs so that it can be used in numerous graph mining tasks. By using an unsupervised neural network approach on input graphs, we aim to capture the underlying distribution of the data in order to discriminate between different class of networks. Our method is assessed empirically on synthetic and real life datasets and evaluated in three different tasks: graph clustering, visualization and classification. Results reveal that our method outperforms well known graph distances and graph-kernels in clustering and classification tasks, being highly efficient in runtime.
A large number of real-world graphs or networks are inherently heterogeneous, involving a diversity of node types and relation types. Heterogeneous graph embedding is to embed rich structural and semantic information of a heterogeneous graph into low-dimensional node representations. Existing models usually define multiple metapaths in a heterogeneous graph to capture the composite relations and guide neighbor selection. However, these models either omit node content features, discard intermediate nodes along the metapath, or only consider one metapath. To address these three limitations, we propose a new model named Metapath Aggregated Graph Neural Network (MAGNN) to boost the final performance. Specifically, MAGNN employs three major components, i.e., the node content transformation to encapsulate input node attributes, the intra-metapath aggregation to incorporate intermediate semantic nodes, and the inter-metapath aggregation to combine messages from multiple metapaths. Extensive experiments on three real-world heterogeneous graph datasets for node classification, node clustering, and link prediction show that MAGNN achieves more accurate prediction results than state-of-the-art baselines.
Recently, graph neural networks have been widely used for network embedding because of their prominent performance in pairwise relationship learning. In the real world, a more natural and common situation is the coexistence of pairwise relationships and complex non-pairwise relationships, which is, however, rarely studied. In light of this, we propose a graph neural network-based representation learning framework for heterogeneous hypergraphs, an extension of conventional graphs, which can well characterize multiple non-pairwise relations. Our framework first projects the heterogeneous hypergraph into a series of snapshots and then we take the Wavelet basis to perform localized hypergraph convolution. Since the Wavelet basis is usually much sparser than the Fourier basis, we develop an efficient polynomial approximation to the basis to replace the time-consuming Laplacian decomposition. Extensive evaluations have been conducted and the experimental results show the superiority of our method. In addition to the standard tasks of network embedding evaluation such as node classification, we also apply our method to the task of spammers detection and the superior performance of our framework shows that relationships beyond pairwise are also advantageous in the spammer detection.
Meta-graph is currently the most powerful tool for similarity search on heterogeneous information networks,where a meta-graph is a composition of meta-paths that captures the complex structural information. However, current relevance computing based on meta-graph only considers the complex structural information, but ignores its embedded meta-paths information. To address this problem, we proposeMEta-GrAph-based network embedding models, called MEGA and MEGA++, respectively. The MEGA model uses normalized relevance or similarity measures that are derived from a meta-graph and its embedded meta-paths between nodes simultaneously, and then leverages tensor decomposition method to perform node embedding. The MEGA++ further facilitates the use of coupled tensor-matrix decomposition method to obtain a joint embedding for nodes, which simultaneously considers the hidden relations of all meta information of a meta-graph.Extensive experiments on two real datasets demonstrate thatMEGA and MEGA++ are more effective than state-of-the-art approaches.
Signed networks are mathematical structures that encode positive and negative relations between entities such as friend/foe or trust/distrust. Recently, several papers studied the construction of useful low-dimensional representations (embeddings) of these networks for the prediction of missing relations or signs. Existing embedding methods for sign prediction generally enforce different notions of status or balance theories in their optimization function. These theories, however, are often inaccurate or incomplete, which negatively impacts method performance. In this context, we introduce conditional signed network embedding (CSNE). Our probabilistic approach models structural information about the signs in the network separately from fine-grained detail. Structural information is represented in the form of a prior, while the embedding itself is used for capturing fine-grained information. These components are then integrated in a rigorous manner. CSNEs accuracy depends on the existence of sufficiently powerful structural priors for modelling signed networks, currently unavailable in the literature. Thus, as a second main contribution, which we find to be highly valuable in its own right, we also introduce a novel approach to construct priors based on the Maximum Entropy (MaxEnt) principle. These priors can model the emph{polarity} of nodes (degree to which their links are positive) as well as signed emph{triangle counts} (a measure of the degree structural balance holds to in a network). Experiments on a variety of real-world networks confirm that CSNE outperforms the state-of-the-art on the task of sign prediction. Moreover, the MaxEnt priors on their own, while less accurate than full CSNE, achieve accuracies competitive with the state-of-the-art at very limited computational cost, thus providing an excellent runtime-accuracy trade-off in resource-constrained situations.
Considering the wide application of network embedding methods in graph data mining, inspired by the adversarial attack in deep learning, this paper proposes a Genetic Algorithm (GA) based Euclidean Distance Attack strategy (EDA) to attack the network embedding, so as to prevent certain structural information from being discovered. EDA focuses on disturbing the Euclidean distance between a pair of nodes in the embedding space as much as possible through minimal modifications of the network structure. Since a large number of downstream network algorithms, such as community detection and node classification, rely on the Euclidean distance between nodes to evaluate the similarity between them in the embedding space, EDA can be considered as a universal attack on a variety of network algorithms. Different from traditional supervised attack strategies, EDA does not need labeling information, and, in other words, is an unsupervised network embedding attack method.