Do you want to publish a course? Click here

Radiation in equilibrium with plasma and plasma effects on cosmic microwave background

105   0   0.0 ( 0 )
 Added by Vadim Munirov
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The spectrum of the radiation of a body in equilibrium is given by Plancks law. In plasma, however, waves below the plasma frequency cannot propagate; consequently, the equilibrium radiation inside plasma is necessarily different from the Planck spectrum. We derive, using three different approaches, the spectrum for the equilibrium radiation inside plasma. We show that, while plasma effects cannot be realistically detected with technology available in the near future, there are a number of quantifiable ways in which plasma affects cosmic microwave background (CMB) radiation.



rate research

Read More

This is a summary of presentations delivered at the OC1 parallel session Primordial Gravitational Waves and the CMB of the 12th Marcel Grossmann meeting in Paris, July 2009. The reports and discussions demonstrated significant progress that was achieved in theory and observations. It appears that the existing data provide some indications of the presence of gravitational wave contribution to the CMB anisotropies, while ongoing and planned observational efforts are likely to convert these indications into more confident statements about the actual detection.
We consider the general problem of charged particle motion in a strong electromagnetic field of arbitrary configuration and find a universal behaviour: for sufficiently high field strengths, the radiation losses lead to a general tendency of the charge to move along the direction that locally yields zero lateral acceleration. The relativistic motion along such a direction results in no radiation losses, according to both classical and quantum descriptions of radiation reaction. We show that such a radiation-free direction (RFD) exists at each point of an arbitrary electromagnetic field, while the time-scale of approaching this direction decreases with the increase of field strength. Thus, in the case of a sufficiently strong electromagnetic field, at each point of space, the charges mainly move and form currents along local RFD, while the deviation of their motion from RFD can be calculated in order to account for their incoherent emission. This forms a general description of particle, and therefore plasma, dynamics in strong electromagnetic fields, the latter can be generated by state-of-the-art lasers or in astrophysical environments.
107 - Dong-Hoon Kim 2016
Understanding the interaction of primordial gravitational waves (GWs) with the Cosmic Microwave Background (CMB) plasma is important for observational cosmology. In this article, we provide an analysis of an effect apparently overlooked as yet. We consider a single free electric charge and suppose that it can be agitated by primordial GWs propagating through the CMB plasma, resulting in periodic, regular motion along particular directions. Light reflected by the charge will be partially polarized, and this will imprint a characteristic pattern on the CMB. We study this effect by considering a simple model in which anisotropic incident electromagnetic (EM) radiation is rescattered by a charge sitting in spacetime perturbed by GWs and becomes polarized. As the charge is driven to move along particular directions, we calculate its dipole moment to determine the leading-order rescattered EM radiation. The Stokes parameters of the rescattered radiation exhibit a net linear polarization. We investigate how this polarization effect can be schematically represented out of the Stokes parameters. We work out the representations of gradient modes (E-modes) and curl modes (B-modes) to produce polarization maps. Although the polarization effect results from GWs, we find that its representations, the E- and B-modes, do not practically reflect the GW properties such as strain amplitude, frequency and polarization states.
Overdense plasmas have been attained with 2.45 GHz microwave heating in the low-field, low-aspect-ratio CNT stellarator. Densities higher than four times the ordinary (O) mode cutoff density were measured with 8 kW of power injected in the O-mode and, alternatively, with 6.5 kW in the extraordinary (X) mode. The temperature profiles peak at the plasma edge. This was ascribed to collisional damping of the X-mode at the upper hybrid resonant layer. The X-mode reaches that location by tunneling, mode-
In recent decades, different types of plasma sources have been used for various types of plasma processing, such as, etching and thin film deposition. The critical parameter for effective plasma processing is high plasma density. One type of high density plasma source is Microwave sheath-Voltage combination Plasma (MVP). In the present investigation, a better design of MVP source is reported, in which over-dense plasma is generated for low input microwave powers. The results indicate that the length of plasma column increases significantly with increase in input microwave power.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا