No Arabic abstract
A new diagnostic has been developed to investigate the wave-particle interaction in the phase-space in gyrokinetic particle-in-cell codes. Based on the projection of energy transfer terms onto the velocity space, the technique has been implemented and tested in the global code ORB5 and it gives an opportunity to localise velocity domains of maximum wave-plasma energy exchange for separate species. Moreover, contribution of different species and resonances can be estimated as well, by integrating the energy transfer terms in corresponding velocity domains. This Mode-Plasma-Resonance (MPR) diagnostic has been applied to study the dynamics of the Energetic-particle-induced Geodesic Acoustic Modes (EGAMs) in an ASDEX Upgrade shot, by analysing the influence of different species on the mode time evolution. Since the equations on which the diagnostic is based, are valid in both linear and nonlinear cases, this approach can be applied to study nonlinear plasma effects. As a possible future application, the technique can be used, for instance, to investigate the nonlinear EGAM frequency chirping, or the plasma heating due to the damping of the EGAMs.
Turbulence is ubiquitously observed in nearly collisionless heliospheric plasmas, including the solar wind and corona and the Earths magnetosphere. Understanding the collisionless mechanisms responsible for the energy transfer from the turbulent fluctuations to the particles is a frontier in kinetic turbulence research. Collisionless energy transfer from the turbulence to the particles can take place reversibly, resulting in non-thermal energy in the particle velocity distribution functions (VDFs) before eventual collisional thermalization is realized. Exploiting the information contained in the fluctuations in the VDFs is valuable. Here we apply a recently developed method based on VDFs, the field-particle correlation technique, to a $beta=1$, solar-wind-like, low-frequency Alfvenic turbulence simulation with well resolved phase space to identify the field-particle energy transfer in velocity space. The field-particle correlations reveal that the energy transfer, mediated by the parallel electric field, results in significant structuring of the ion and electron VDFs in the direction parallel to the magnetic field. Fourier modes representing the length scales between the ion and electron gyroradii show that energy transfer is resonant in nature, localized in velocity space to the Landau resonances for each Fourier mode. The energy transfer closely follows the Landau resonant velocities with varying perpendicular wavenumber $k_perp$ and plasma $beta$. This resonant signature, consistent with Landau damping, is observed in all diagnosed Fourier modes that cover the dissipation range of the simulation.
We apply field-particle correlations -- a technique that tracks the time-averaged velocity-space structure of the energy density transfer rate between electromagnetic fields and plasma particles -- to data drawn from a hybrid Vlasov-Maxwell simulation of Alfven Ion-Cyclotron turbulence. Energy transfer in this system is expected to include both Landau and cyclotron wave-particle resonances, unlike previous systems to which the field-particle correlation technique has been applied. In this simulation, the energy transfer rate mediated by the parallel electric field $E_parallel$ comprises approximately $60%$ of the total rate, with the remainder mediated by the perpendicular electric field $E_perp$. The parallel electric field resonantly couples to protons, with the canonical bipolar velocity-space signature of Landau damping identified at many points throughout the simulation. The energy transfer mediated by $E_perp$ preferentially couples to particles with $v_{tp} lesssim v_perp lesssim 3 v_{tp}$ in agreement with the expected formation of a cyclotron diffusion plateau. Our results demonstrate clearly that the field-particle correlation technique can distinguish distinct channels of energy transfer using single-point measurements, even at points in which multiple channels act simultaneously, and can be used to determine quantitatively the rates of particle energization in each channel.
We investigate the interaction of electromagnetic waves and electron beams in a 4 meters long traveling wave tube (TWT). The device is specially designed to simulate beam-plasma experiments without appreciable noise. This TWT presents an upgraded slow wave structure (SWS) that results in more precise measurements and makes new experiments possible. We introduce a theoretical model describing wave propagation through the SWS and validated by the experimental dispersion relation, impedance, phase and group velocities. We analyze nonlinear effects arising from the beam-wave interaction, such as the modulation of the electron beam and the wave growth and saturation process. When the beam current is low, the wave growth coefficient and saturation amplitude follow the linear theory predictions. However, for high values of current, nonlinear space charge effects become important and these parameters deviate from the linear predictions, tending to a constant value. After saturation, we also observe trapping of the beam electrons, which alters the wave amplitude along the TWT.
Context. The first studies with Parker Solar Probe (PSP) data have made significant progress toward the understanding of the fundamental properties of ion cyclotron waves in the inner heliosphere. The survey mode particle measurements of PSP, however, did not make it possible to measure the coupling between electromagnetic fields and particles on the time scale of the wave periods. Aims. We present a novel approach to study wave-particle energy exchange with PSP. Methods. We use the Flux Angle operation mode of the Solar Probe Cup in conjunction with the electric field measurements and present a case study when the Flux Angle mode measured the direct interaction of the proton velocity distribution with an ion cyclotron wave. Results. Our results suggest that the energy transfer from fields to particles on the timescale of a cyclotron period is equal to approximately 3-6% of the electromagnetic energy flux. This rate is consistent with the hypothesis that the ion cyclotron wave was locally generated in the solar wind.
Electron dynamics and energization are one of the key components of magnetic field dissipation in collisionless reconnection. In 2D numerical simulations of magnetic reconnection, the main mechanism that limits the current density and provides an effective dissipation is most probably the electron pressure tensor term, that has been shown to break the frozen-in condition at the x-point. In addition, the electron-meandering-orbit scale controls the width of the electron dissipation region, where the electron temperature has been observed to increase both in recent Magnetospheric Multiple-Scale (MMS) observations as well as in laboratory experiments, such as the Magnetic Reconnection Experiment (MRX). By means of two-dimensional full-particle simulations in an open system, we investigate how the energy conversion and particle energization depend on the guide field intensity. We study the energy transfer from magnetic field to the plasma, ${bf E}cdot {bf J}$ and the threshold guide field separating two regimes where either the parallel component, $E_{||}J_{||}$, or the perpendicular component, ${bf E}_{perp}cdot {bf J}_{perp}$, dominate the energy transfer, confirming recent MRX results and also consistent with MMS observations. We calculate the energy partition between fields, kinetic, and thermal energy of different species, from electron to ion scales, showing there is no significant variation for different guide field configurations. Finally we study possible mechanisms for electron perpendicular heating by examining electron distribution functions and self-consistently evolved particle orbits in high guide field configurations.