Do you want to publish a course? Click here

Mapping the Inner Structure of Quasars with Time-Domain Spectroscopy

53   0   0.0 ( 0 )
 Added by Yue Shen
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The ubiquitous variability of quasars across a wide range of wavelengths and timescales encodes critical information about the structure and dynamics of the circumnuclear emitting regions that are too small to be directly resolved, as well as detailed underlying physics of accretion and feedback processes in these active supermassive black holes. We emphasize the importance of studying quasar variability with time-domain spectroscopy, focusing on two science cases: (1) reverberation mapping (RM) to measure the broad-line region sizes and black hole masses in distant quasars; (2) spectroscopic follow-up of extreme variability quasars that dramatically change their continuum and broad-line flux within several years. We highlight the need for dedicated optical-infrared spectroscopic survey facilities in the coming decades to accompany wide-area time-domain imaging surveys, including: (1) the next phase of the Sloan Digital Sky Survey (SDSS-V; ~2020-2025), an all-sky, time-domain multi-object spectroscopic survey with 2.5m-class telescopes; (2) the planned Maunakea Spectroscopic Explorer, a dedicated 10m-class spectroscopic survey telescope with a 1.5 sq. deg field-of-view and multiplex of thousands of fibers in both optical and near-IR (J+H) to begin operations in 2029; (3) the Time-domain Spectroscopic Observatory (TSO), a proposed Probe-class ~1.3m telescope at L2, with imaging and spectroscopy (R=200, 1800) in 4 bands (0.3 - 5 micron) and rapid slew capability to 90% of sky, which will extend the coverage of Hbeta to z=8.



rate research

Read More

It is well known that reverberation mapping of active galactic nuclei (AGN) reveals a relationship between AGN luminosity and the size of the broad-line region, and that use of this relationship, combined with the Doppler width of the broad emission line, enables an estimate of the mass of the black hole at the center of the active nucleus based on a single spectrum. An unresolved key issue is the choice of parameter used to characterize the line width, either FWHM or line dispersion (the square root of the second moment of the line profile). We argue here that use of FWHM introduces a bias, stretching the mass scale such that high masses are overestimated and low masses are underestimated. Here we investigate estimation of black hole masses in AGNs based on individual or single epoch observations, with a particular emphasis in comparing mass estimates based on line dispersion and FWHM. We confirm the recent findings that, in addition to luminosity and line width, a third parameter is required to obtain accurate masses and that parameter seems to be Eddington ratio. We present simplified empirical formulae for estimating black hole masses from the Hbeta 4861 A and C IV 1549 A emission lines. While the AGN continuum luminosity at 5100 A is usually used to predict the Hbeta reverberation lag, we show that the luminosity of the Hbeta broad component can be used instead without any loss of precision, thus eliminating the difficulty of accurately accounting for the host-galaxy contribution to the observed luminosity.
561 - Sha-Sha Li , Sen Yang , Zi-Xu Yang 2021
We report the results of a multi-year spectroscopic and photometric monitoring campaign of two luminous quasars, PG~0923+201 and PG~1001+291, both located at the high-luminosity end of the broad-line region (BLR) size-luminosity relation with optical luminosities above $10^{45}~{rm erg~s^{-1}}$. PG~0923+201 is for the first time monitored, and PG~1001+291 was previously monitored but our campaign has a much longer temporal baseline. We detect time lags of variations of the broad H$beta$, H$gamma$, Fe {sc ii} lines with respect to those of the 5100~{AA} continuum. The velocity-resolved delay map of H$beta$ in PG~0923+201 indicates a complicated structure with a mix of Keplerian disk-like motion and outflow, and the map of H$beta$ in PG~1001+291 shows a signature of Keplerian disk-like motion. Assuming a virial factor of $f_{rm BLR}=1$ and FWHM line widths, we measure the black hole mass to be $118_{-16}^{+11}times 10^7 M_{odot}$ for PG~0923+201 and $3.33_{-0.54}^{+0.62}times 10^7 M_{odot}$ for PG~1001+291. Their respective accretion rates are estimated to be $0.21_{-0.07}^{+0.06} times L_{rm Edd},c^{-2}$ and $679_{-227}^{+259}times L_{rm Edd},c^{-2}$, indicating that PG~0923+201 is a sub-Eddington accretor and PG~1001+291 is a super-Eddington accretor. While the H$beta$ time lag of PG~0923+201 agrees with the size-luminosity relation, the time lag of PG~1001+291 shows a significant deviation, confirming that in high-luminosity AGN the BLR size depends on both luminosity and Eddington ratio. Black hole mass estimates from single AGN spectra will be over-estimated at high luminosities and redshifts if this effect is not taken into account.
As astronomers increasingly exploit the information available in the time domain, spectroscopic variability in particular opens broad new channels of investigation. Here we describe the selection algorithms for all targets intended for repeat spectroscopy in the Time Domain Spectroscopic Survey (TDSS), part of the extended Baryon Oscillation Spectroscopic Survey within the Sloan Digital Sky Survey-IV. Also discussed are the scientific rationale and technical constraints leading to these target selections. The TDSS includes a large Repeat Quasar Spectroscopy (RQS) program delivering ~13,000 repeat spectra of confirmed SDSS quasars, and several smaller Few-Epoch Spectroscopy (FES) programs targeting specific classes of quasars as well as stars. The RQS program aims to provide a large and diverse quasar data set for studying variations in quasar spectra on timescales of years, a comparison sample for the FES quasar programs, and opportunity for discovering rare, serendipitous events. The FES programs cover a wide variety of phenomena in both quasars and stars. Quasar FES programs target broad absorption line quasars, high signal-to-noise ratio normal broad line quasars, quasars with double-peaked or very asymmetric broad emission line profiles, binary supermassive black hole candidates, and the most photometrically variable quasars. Strongly variable stars are also targeted for repeat spectroscopy, encompassing many types of eclipsing binary systems, and classical pulsators like RR Lyrae. Other stellar FES programs allow spectroscopic variability studies of active ultracool dwarf stars, dwarf carbon stars, and white dwarf/M dwarf spectroscopic binaries. We present example TDSS spectra and describe anticipated sample sizes and results.
We present the results of a dust-reverberation survey of quasars at redshifts z<0.6. We found a delayed response of the K-band flux variation after the optical flux variation in 25 out of 31 targets, and obtained the lag time between them for 22 targets. Combined with the results for nearby Seyfert galaxies, we provide the largest homogeneous collection of K-band dust-reverberation data for 36 type 1 active galactic nuclei (AGNs). This doubles the sample and includes the most distant AGN and the largest lag so far measured. We estimated the optical luminosity of the AGN component of each target using three different methods: spectral decomposition, the flux-variation-gradient method, and image decomposition. We found a strong correlation between the reverberation radius for the innermost dust torus and the optical luminosity over a range of approximately four orders of magnitude in luminosity, as is already known for Seyfert galaxies. We estimated the luminosity distances of the AGNs based on their dust-reverberation lags, and found that the data in the redshift-distance diagram are consistent with the current standard estimates of the cosmological parameters. We also present the radius-luminosity relations for isotropic luminosity indicators such as the hard X-ray (14--195 keV), [OIV] 25.89 um, and mid-infrared (12 um) continuum luminosities, which are applicable to obscured AGNs.
We present preliminary results of the CIDA Equatorial Variability Survey (CEVS), looking for quasar (hereafter QSO) candidates near the Galactic plane. The CEVS contains photometric data from extended and adjacent regions of the Milky Way disk ($sim$ 500 sq. deg.). In this work 2.5 square degrees with moderately high temporal sampling in the CEVS were analyzed. The selection of QSO candidates was based on the study of intrinsic optical photometric variability of 14,719 light curves. We studied samples defined by cuts in the variability index (Vindex $>$ 66.5), periodicity index (Q $>$ 2), and the distribution of these sources in the plane (AT , ${gamma}$), using a slight modification of the first-order of the structure function for the temporal sampling of the survey. Finally, 288 sources were selected as QSO candidates. The results shown in this work are a first attempt to develop a robust method to detect QSO towards the Galactic plane in the era of massive surveys such as VISTA and Gaia.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا