Do you want to publish a course? Click here

Numerical Simulations of Magnetized Astrophysical Jets and Comparison with Laboratory Laser Experiments

248   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The results of MHD numerical simulations of the formation and development of magnetized jets are presented. Similarity criteria for comparisons of the results of laboratory laser experiments and numerical simulations of astrophysical jets are discussed. The results of laboratory simulations of jets generated in experiments at the Neodim laser installation are presented.

rate research

Read More

The use of Z-pinch facilities makes it possible to carry out well-controlled and diagnosable laboratory experiments to study laboratory jets with scaling parameters close to those of the jets from young stars. This makes it possible to observe processes that are inaccessible to astronomical observations. Such experiments are carried out at the PF-3 facility (plasma focus, Kurchatov Institute), in which the emitted plasma emission propagates along the drift chamber through the environment at a distance of one meter. The paper presents the results of experiments with helium, in which a successive release of two ejections was observed. An analysis of these results suggests that after the passage of the first supersonic ejection, a region with a low concentration is formed behind it, the so-called vacuum trace, due to which the subsequent ejection practically does not experience environmental resistance and propagates being collimated. The numerical modeling of the propagation of two ejections presented in the paper confirms this point of view. Using scaling laws and appropriate numerical simulations of astrophysical ejections, it is shown that this effect can also be significant for the jets of young stars.
Jets are observed in young stellar objects, X-ray sources, active galactic nuclei (AGN). The mechanisms of jet formation may be divided in regular, acting continuously for a long time, and explosive ones. Continuous mechanisms are related with electrodynamics and radiation pressure acceleration, hydrodynamical acceleration in the nozzle inside a thick disk, acceleration by relativistic beam of particles. Explosive jet formation is connected with supernovae, gamma ray bursts and explosive events in galactic nuclei. Mechanisms of jet collimation may be connected with magnetic confinement, or a pressure of external gas. Explosive formation of jets in the laboratory is modeled in the experiments with powerful laser beam, and plasma focus.
Broadband emission from relativistic outflows (jets) of active galactic nuclei (AGN) and gamma-ray bursts (GRBs) contains valuable information about the nature of the jet itself, and about the central engine which launches it. Using special relativistic hydrodynamics and magnetohydronamics simulations we study the dynamics of the jet and its interaction with the surrounding medium. The observational signature of the simulated jets is computed using a radiative transfer code developed specifically for the purpose of computing multi-wavelength, time-dependent, non-thermal emission from astrophysical plasmas. We present results of a series of long-term projects devoted to understanding the dynamics and emission of jets in parsec-scale AGN jets, blazars and the afterglow phase of the GRBs.
In this chapter, we review some features of particle acceleration in astrophysical jets. We begin by describing four observational results relating to the topic, with particular emphasis on jets in active galactic nuclei and parallels between different sources. We then discuss the ways in which particles can be accelerated to high energies in magnetised plasmas, focusing mainly on shock acceleration, second-order Fermi and magnetic reconnection; in the process, we attempt to shed some light on the basic conditions that must be met by any mechanism for the various observational constraints to be satisfied. We describe the limiting factors for the maximum particle energy and briefly discuss multimessenger signals from neutrinos and ultrahigh energy cosmic rays, before describing the journey of jet plasma from jet launch to cocoon with reference to the different acceleration mechanisms. We conclude with some general comments on the future outlook.
The internal shocks scenario in relativistic jets is used to explain the variability of the blazar emission. Recent studies have shown that the magnetic field significantly alters the shell collision dynamics, producing a variety of spectral energy distributions and light-curves patterns. However, the role played by magnetization in such emission processes is still not entirely understood. In this work we numerically solve the magnetohydodynamic evolution of the magnetized shells collision, and determine the influence of the magnetization on the observed radiation. Our procedure consists in systematically varying the shell Lorentz factor, relative velocity, and viewing angle. The calculations needed to produce the whole broadband spectral energy distributions and light-curves are computationally expensive, and are achieved using a high-performance parallel code.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا