Do you want to publish a course? Click here

Local-hidden-state models for T-states using finite shared randomness

206   0   0.0 ( 0 )
 Added by Fulin Zhang
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The study of local models using finite shared randomness originates from the consideration about the cost of classically simulating entanglement in composite quantum systems. We construct explicitly two families of local-hidden-state (LHS) models for T-states, by mapping the problem to the Werner state. The continuous decreasing of shared randomness along with entanglement, as the anisotropy increases, can be observed in the one from the most economical model for the Werner state. The construction of the one for separable states shows that the separable boundary of T-states can be generated from the one of the Werner state, and the cost is 2 classical bits.



rate research

Read More

For a bipartite entangled state shared by two observers, Alice and Bob, Alice can affect the post-measured states left to Bob by choosing different measurements on her half. Alice can convince Bob that she has such an ability if and only if the unnormalized postmeasured states cannot be described by a local-hidden-state (LHS) model. In this case, the state is termed steerable from Alice to Bob. By converting the problem to construct LHS models for two-qubit Bell diagonal states to the one for Werner states, we obtain the optimal models given by Jevtic textit{et al.} [J. Opt. Soc. Am. B 32, A40 (2015)], which are developed by using the steering ellipsoid formalism. Such conversion also enables us to derive a sufficient criterion for unsteerability of any two-qubit state.
Constructing local hidden variable (LHV) models for entangled quantum states is challenging, as the model should reproduce quantum predictions for all possible local measurements. Here we present a simple method for building LHV models, applicable to general entangled states, which consists in verifying that the statistics resulting from a finite set of measurements is local, a much simpler problem. This leads to a sequence of tests which, in the limit, fully capture the set of quantum states admitting a LHV model. Similar methods are developed for constructing local hidden state models. We illustrate the practical relevance of these methods with several examples, and discuss further applications.
Entanglement allows for the nonlocality of quantum theory, which is the resource behind device-independent quantum information protocols. However, not all entangled quantum states display nonlocality, and a central question is to determine the precise relation between entanglement and nonlocality. Here we present the first general test to decide whether a quantum state is local, and that can be implemented by semidefinite programming. This method can be applied to any given state and for the construction of new examples of states with local hidden-variable models for both projective and general measurements. As applications we provide a lower bound estimate of the fraction of two-qubit local entangled states and present new explicit examples of such states, including those which arise from physical noise models, Bell-diagonal states, and noisy GHZ and W states.
Two processors output correlated sequences using the help of a coordinator with whom they individually share independent randomness. For the case of unlimited shared randomness, we characterize the rate of communication required from the coordinator to the processors over a broadcast link. We also give an achievable trade-off between the communication and shared randomness rates.
We consider a communication method, where the sender encodes n classical bits into 1 qubit and sends it to the receiver who performs a certain measurement depending on which of the initial bits must be recovered. This procedure is called (n,1,p) quantum random access code (QRAC) where p > 1/2 is its success probability. It is known that (2,1,0.85) and (3,1,0.79) QRACs (with no classical counterparts) exist and that (4,1,p) QRAC with p > 1/2 is not possible. We extend this model with shared randomness (SR) that is accessible to both parties. Then (n,1,p) QRAC with SR and p > 1/2 exists for any n > 0. We give an upper bound on its success probability (the known (2,1,0.85) and (3,1,0.79) QRACs match this upper bound). We discuss some particular constructions for several small values of n. We also study the classical counterpart of this model where n bits are encoded into 1 bit instead of 1 qubit and SR is used. We give an optimal construction for such codes and find their success probability exactly--it is less than in the quantum case. Interactive 3D quantum random access codes are available on-line at http://home.lanet.lv/~sd20008/racs .
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا