Do you want to publish a course? Click here

Cosmic Dawn and Reionization: Astrophysics in the Final Frontier

91   0   0.0 ( 0 )
 Added by Hooshang Nayyeri
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The cosmic dawn and epoch of reionization mark the time period in the universe when stars, galaxies, and blackhole seeds first formed and the intergalactic medium changed from neutral to an ionized one. Despite substantial progress with multi-wavelength observations, astrophysical process during this time period remain some of the least understood with large uncertainties on our existing models of galaxy, blackhole, and structure formation. This white paper outlines the current state of knowledge and anticipated scientific outcomes with ground and space-based astronomical facilities in the 2020s. We then propose a number of scientific goals and objectives for new facilities in late 2020s to mid 2030s that will lead to definitive measurements of key astrophysical processes in the epoch of reionization and cosmic dawn.



rate research

Read More

The properties of the first galaxies, expected to drive the Cosmic Dawn (CD) and the Epoch of Reionization (EoR), are encoded in the 3D structure of the cosmic 21-cm signal. Parameter inference from upcoming 21-cm observations promises to revolutionize our understanding of these unseen galaxies. However, prior inference was done using models with several simplifying assumptions. Here we introduce a flexible, physically-motivated parametrization for high-$z$ galaxy properties, implementing it in the public code 21cmFAST. In particular, we allow their star formation rates and ionizing escape fraction to scale with the masses of their host dark matter halos, and directly compute inhomogeneous, sub-grid recombinations in the intergalactic medium. Combining current Hubble observations of the rest-frame UV luminosity function (UV LFs) at high-$z$ with a mock 1000h 21-cm observation using the Hydrogen Epoch of Reionization Arrays (HERA), we constrain the parameters of our model using a Monte Carlo Markov Chain sampler of 3D simulations, 21CMMC. We show that the amplitude and scaling of the stellar mass with halo mass is strongly constrained by LF observations, while the remaining galaxy properties are constrained mainly by 21-cm observations. The two data sets compliment each other quite well, mitigating degeneracies intrinsic to each observation. All eight of our astrophysical parameters are able to be constrained at the level of $sim 10%$ or better. The updat
The Cosmic Dawn Intensity Mapper (CDIM) will transform our understanding of the era of reionization when the Universe formed the first stars and galaxies, and UV photons ionized the neutral medium. CDIM goes beyond the capabilities of upcoming facilities by carrying out wide area spectro-imaging surveys, providing redshifts of galaxies and quasars during reionization as well as spectral lines that carry crucial information on their physical properties. CDIM will make use of unprecedented sensitivity to surface brightness to measure the intensity fluctuations of reionization on large-scales to provide a valuable and complementary dataset to 21-cm experiments. The baseline mission concept is an 83-cm infrared telescope equipped with a focal plane of 24 times 20482 detectors capable of R = 300 spectro-imaging observations over the wavelength range of 0.75 to 7.5 {mu}m using Linear Variable Filters (LVFs). CDIM provides a large field of view of 7.8 deg2 allowing efficient wide area surveys, and instead of moving instrumental components, spectroscopic mapping is obtained through a shift-and-stare strategy through spacecraft operations. CDIM design and capabilities focus on the needs of detecting faint galaxies and quasars during reionization and intensity fluctuation measurements of key spectral lines, including Lyman-{alpha} and H{alpha} radiation from the first stars and galaxies. The design is low risk, carries significant science and engineering margins, and makes use of technologies with high technical readiness level for space observations.
Cosmic dawn and the Epoch of Reionization (EoR) are among the least explored observational eras in cosmology: a time at which the first galaxies and supermassive black holes formed and reionized the cold, neutral Universe of the post-recombination era. With current instruments, only a handful of the brightest galaxies and quasars from that time are detectable as individual objects, due to their extreme distances. Fortunately, a multitude of multi-wavelength intensity mapping measurements, ranging from the redshifted 21 cm background in the radio to the unresolved X-ray background, contain a plethora of synergistic information about this elusive era. The coming decade will likely see direct detections of inhomogenous reionization with CMB and 21 cm observations, and a slew of other probes covering overlapping areas and complementary physical processes will provide crucial additional information and cross-validation. To maximize scientific discovery and return on investment, coordinated survey planning and joint data analysis should be a high priority, closely coupled to computational models and theoretical predictions.
The Square Kilometre Array (SKA) will have a low frequency component (SKA-low) which has as one of its main science goals the study of the redshifted 21cm line from the earliest phases of star and galaxy formation in the Universe. This 21cm signal provides a new and unique window on both the formation of the first stars and accreting black holes and the later period of substantial ionization of the intergalactic medium. The signal will teach us fundamental new things about the earliest phases of structure formation, cosmology and even has the potential to lead to the discovery of new physical phenomena. Here we present a white paper with an overview of the science questions that SKA-low can address, how we plan to tackle these questions and what this implies for the basic design of the telescope.
The Cosmic Dawn and Reionization epochs remain a fundamental but challenging frontier of astrophysics and cosmology. We advocate a large-scale, multi-tracer approach to develop a comprehensive understanding of the physics that led to the formation and evolution of the first stars and galaxies. We highlight the line intensity mapping technique to trace the multi-phase reionization topology on large scales, and measure reionization history in detail. Besides 21cm, we advocate for Lya tomography mapping during the epoch of Wouthuysen-Field coupling as an additional probe of the cosmic dawn era.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا