Do you want to publish a course? Click here

Quantised conductance of one-dimensional strongly-correlated electrons in an oxide heterostructure

76   0   0.0 ( 0 )
 Added by Hangtian Hou
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Oxide heterostructures are versatile platforms with which to research and create novel functional nanostructures. We successfully develop one-dimensional (1D) quantum-wire devices using quantum point contacts on MgZnO/ZnO heterostructures and observe ballistic electron transport with conductance quantised in units of 2e^{2}/h. Using DC-bias and in-plane field measurements, we find that the g-factor is enhanced to around 6.8, more than three times the value in bulk ZnO. We show that the effective mass m^{*} increases as the electron density decreases, resulting from the strong electron-electron interactions. In this strongly interacting 1D system we study features matching the 0.7 conductance anomalies up to the fifth subband. This paper demonstrates that high-mobility oxide heterostructures such as this can provide good alternatives to conventional III-V semiconductors in spintronics and quantum computing as they do not have their unavoidable dephasing from nuclear spins. This paves a way for the development of qubits benefiting from the low defects of an undoped heterostructure together with the long spin lifetimes achievable in silicon.



rate research

Read More

457 - A. Jouan , G. Singh , E. Lesne 2019
Electric-field effect control of two-dimensional electron gases (2-DEG) has enabled the exploration of nanoscale electron quantum transport in semiconductors. Beyond these classical materials, transition metal-oxide-based structures have d-electronic states favoring the emergence of novel quantum orders absent in conventional semiconductors. In this context, the LaAlO3/SrTiO3 interface that combines gate-tunable superconductivity and sizeable spin-orbit coupling is emerging as a promising platform to realize topological superconductivity. However, the fabrication of nanodevices in which the electronic properties of this oxide interface can be controlled at the nanoscale by field-effect remains a scientific and technological challenge. Here, we demonstrate the quantization of conductance in a ballistic quantum point contact (QPC), formed by electrostatic confinement of the LaAlO3/SrTiO3 2-DEG with a split-gate. Through finite source-drain voltage, we perform a comprehensive spectroscopic investigation of the 3d energy levels inside the QPC, which can be regarded as a spectrometer able to probe Majorana states in an oxide 2-DEG.
An electron is usually considered to have only one type of kinetic energy, but could it have more, for its spin and charge, or by exciting other electrons? In one dimension (1D), the physics of interacting electrons is captured well at low energies by the Tomonaga-Luttinger-Liquid (TLL) model, yet little has been observed experimentally beyond this linear regime. Here, we report on measurements of many-body modes in 1D gated-wires using a tunnelling spectroscopy technique. We observe two separate Fermi seas at high energies, associated with spin and charge excitations, together with the emergence of three additional 1D replica modes that strengthen with decreasing wire length. The effective interaction strength in the wires is varied by changing the amount of 1D inter-subband screening by over 45%. Our findings demonstrate the existence of spin-charge separation in the whole energy band outside the low-energy limit of validity of the TLL model, and also set a limit on the validity of the newer nonlinear TLL theory.
The prospect of coupling a two-dimensional (2D) semiconductor heterostructure to a superconductor opens new research and technology opportunities, including fundamental problems in mesoscopic superconductivity, scalable superconducting electronics, and new topological states of matter. For instance, one route toward realizing topological matter is by coupling a 2D electron gas (2DEG) with strong spin-orbit interaction to an s-wave superconductor. Previous efforts along these lines have been hindered by interface disorder and unstable gating. Here, we report measurements on a gateable InGaAs/InAs 2DEG with patterned epitaxial Al, yielding multilayer devices with atomically pristine interfaces between semiconductor and superconductor. Using surface gates to form a quantum point contact (QPC), we find a hard superconducting gap in the tunneling regime, overcoming the soft-gap problem in 2D superconductor-semiconductor hybrid systems. With the QPC in the open regime, we observe a first conductance plateau at 4e^2/h, as expected theoretically for a normal-QPC-superconductor structure. The realization of a hard-gap semiconductor-superconductor system that is amenable to top-down processing provides a means of fabricating scalable multicomponent hybrid systems for applications in low-dissipation electronics and topological quantum information.
We study Josephson oscillations of two strongly correlated one-dimensional bosonic clouds separated by a localized barrier. Using a quantum-Langevin approach and the exact Tonks-Girardeau solution in the impenetrable-boson limit, we determine the dynamical evolution of the particle-number imbalance, displaying an effective damping of the Josephson oscillations which depends on barrier height, interaction strength and temperature. We show that the damping originates from the quantum and thermal fluctuations intrinsically present in the strongly correlated gas. Thanks to the density-phase duality of the model, the same results apply to particle-current oscillations in a one-dimensional ring where a weak barrier couples different angular momentum states.
242 - Jan Kunes 2015
The idea of exciton condensation in solids was introduced in 1960s with the analogy to superconductivity in mind. While exciton supercurrents have been realized only in artificial quantum-well structures so far, the application of the concept of excitonic condensation to bulk solids leads to a rich spectrum of thermodynamic phases with diverse physical properties. In this review we discuss recent developments in the theory of exciton condensation in systems described by Hubbard-type models. In particular, we focus on the connections to their various strong-coupling limits that have been studied in other contexts, e.g., cold atoms physics. One of our goals is to provide a dictionary which would allow the reader to efficiently combine results obtained in these different fields.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا