Price of Anarchy in Bernoulli Congestion Games with Affine Costs


Abstract in English

We consider an atomic congestion game in which each player participates in the game with an exogenous and known probability $p_{i}in[0,1]$, independently of everybody else, or stays out and incurs no cost. We first prove that the resulting game is potential. Then, we compute the parameterized price of anarchy to characterize the impact of demand uncertainty on the efficiency of selfish behavior. It turns out that the price of anarchy as a function of the maximum participation probability $p=max_{i} p_{i}$ is a nondecreasing function. The worst case is attained when players have the same participation probabilities $p_{i}equiv p$. For the case of affine costs, we provide an analytic expression for the parameterized price of anarchy as a function of $p$. This function is continuous on $(0,1]$, is equal to $4/3$ for $0<pleq 1/4$, and increases towards $5/2$ when $pto 1$. Our work can be interpreted as providing a continuous transition between the price of anarchy of nonatomic and atomic games, which are the extremes of the price of anarchy function we characterize. We show that these bounds are tight and are attained on routing games -- as opposed to general congestion games -- with purely linear costs (i.e., with no constant terms).

Download