No Arabic abstract
Recently, leveraging on the development of end-to-end convolutional neural networks (CNNs), deep stereo matching networks have achieved remarkable performance far exceeding traditional approaches. However, state-of-the-art stereo frameworks still have difficulties at finding correct correspondences in texture-less regions, detailed structures, small objects and near boundaries, which could be alleviated by geometric clues such as edge contours and corresponding constraints. To improve the quality of disparity estimates in these challenging areas, we propose an effective multi-task learning network, EdgeStereo, composed of a disparity estimation branch and an edge detection branch, which enables end-to-end predictions of both disparity map and edge map. To effectively incorporate edge cues, we propose the edge-aware smoothness loss and edge feature embedding for inter-task interactions. It is demonstrated that based on our unified model, edge detection task and stereo matching task can promote each other. In addition, we design a compact module called residual pyramid to replace the commonly-used multi-stage cascaded structures or 3-D convolution based regularization modules in current stereo matching networks. By the time of the paper submission, EdgeStereo achieves state-of-art performance on the FlyingThings3D dataset, KITTI 2012 and KITTI 2015 stereo benchmarks, outperforming other published stereo matching methods by a noteworthy margin. EdgeStereo also achieves comparable generalization performance for disparity estimation because of the incorporation of edge cues.
Recent convolutional neural networks, especially end-to-end disparity estimation models, achieve remarkable performance on stereo matching task. However, existed methods, even with the complicated cascade structure, may fail in the regions of non-textures, boundaries and tiny details. Focus on these problems, we propose a multi-task network EdgeStereo that is composed of a backbone disparity network and an edge sub-network. Given a binocular image pair, our model enables end-to-end prediction of both disparity map and edge map. Basically, we design a context pyramid to encode multi-scale context information in disparity branch, followed by a compact residual pyramid for cascaded refinement. To further preserve subtle details, our EdgeStereo model integrates edge cues by feature embedding and edge-aware smoothness loss regularization. Comparative results demonstrates that stereo matching and edge detection can help each other in the unified model. Furthermore, our method achieves state-of-art performance on both KITTI Stereo and Scene Flow benchmarks, which proves the effectiveness of our design.
Being a crucial task of autonomous driving, Stereo matching has made great progress in recent years. Existing stereo matching methods estimate disparity instead of depth. They treat the disparity errors as the evaluation metric of the depth estimation errors, since the depth can be calculated from the disparity according to the triangulation principle. However, we find that the error of the depth depends not only on the error of the disparity but also on the depth range of the points. Therefore, even if the disparity error is low, the depth error is still large, especially for the distant points. In this paper, a novel Direct Depth Learning Network (DDL-Net) is designed for stereo matching. DDL-Net consists of two stages: the Coarse Depth Estimation stage and the Adaptive-Grained Depth Refinement stage, which are all supervised by depth instead of disparity. Specifically, Coarse Depth Estimation stage uniformly samples the matching candidates according to depth range to construct cost volume and output coarse depth. Adaptive-Grained Depth Refinement stage performs further matching near the coarse depth to correct the imprecise matching and wrong matching. To make the Adaptive-Grained Depth Refinement stage robust to the coarse depth and adaptive to the depth range of the points, the Granularity Uncertainty is introduced to Adaptive-Grained Depth Refinement stage. Granularity Uncertainty adjusts the matching range and selects the candidates features according to coarse prediction confidence and depth range. We verify the performance of DDL-Net on SceneFlow dataset and DrivingStereo dataset by different depth metrics. Results show that DDL-Net achieves an average improvement of 25% on the SceneFlow dataset and $12%$ on the DrivingStereo dataset comparing the classical methods. More importantly, we achieve state-of-the-art accuracy at a large distance.
Stereo matching is essential for robot navigation. However, the accuracy of current widely used traditional methods is low, while methods based on CNN need expensive computational cost and running time. This is because different cost volumes play a c
Dense stereo matching with deep neural networks is of great interest to the research community. Existing stereo matching networks typically use slow and computationally expensive 3D convolutions to improve the performance, which is not friendly to real-world applications such as autonomous driving. In this paper, we propose the Efficient Stereo Network (ESNet), which achieves high performance and efficient inference at the same time. ESNet relies only on 2D convolution and computes multi-scale cost volume efficiently using a warping-based method to improve the performance in regions with fine-details. In addition, we address the matching ambiguity issue in the occluded region by proposing ESNet-M, a variant of ESNet that additionally estimates an occlusion mask without supervision. We further improve the network performance by proposing a new training scheme that includes dataset scheduling and unsupervised pre-training. Compared with other low-cost dense stereo depth estimation methods, our proposed approach achieves state-of-the-art performance on the Scene Flow [1], DrivingStereo [2], and KITTI-2015 dataset [3]. Our code will be made available.
In this paper, we propose a unified method to jointly learn optical flow and stereo matching. Our first intuition is stereo matching can be modeled as a special case of optical flow, and we can leverage 3D geometry behind stereoscopic videos to guide the learning of these two forms of correspondences. We then enroll this knowledge into the state-of-the-art self-supervised learning framework, and train one single network to estimate both flow and stereo. Second, we unveil the bottlenecks in prior self-supervised learning approaches, and propose to create a new set of challenging proxy tasks to boost performance. These two insights yield a single model that achieves the highest accuracy among all existing unsupervised flow and stereo methods on KITTI 2012 and 2015 benchmarks. More remarkably, our self-supervised method even outperforms several state-of-the-art fully supervised methods, including PWC-Net and FlowNet2 on KITTI 2012.