Do you want to publish a course? Click here

Meta-SR: A Magnification-Arbitrary Network for Super-Resolution

77   0   0.0 ( 0 )
 Added by Xuecai Hu
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Recent research on super-resolution has achieved great success due to the development of deep convolutional neural networks (DCNNs). However, super-resolution of arbitrary scale factor has been ignored for a long time. Most previous researchers regard super-resolution of different scale factors as independent tasks. They train a specific model for each scale factor which is inefficient in computing, and prior work only take the super-resolution of several integer scale factors into consideration. In this work, we propose a novel method called Meta-SR to firstly solve super-resolution of arbitrary scale factor (including non-integer scale factors) with a single model. In our Meta-SR, the Meta-Upscale Module is proposed to replace the traditional upscale module. For arbitrary scale factor, the Meta-Upscale Module dynamically predicts the weights of the upscale filters by taking the scale factor as input and use these weights to generate the HR image of arbitrary size. For any low-resolution image, our Meta-SR can continuously zoom in it with arbitrary scale factor by only using a single model. We evaluated the proposed method through extensive experiments on widely used benchmark datasets on single image super-resolution. The experimental results show the superiority of our Meta-Upscale.



rate research

Read More

Recently, the performance of single image super-resolution (SR) has been significantly improved with powerful networks. However, these networks are developed for image SR with a single specific integer scale (e.g., x2;x3,x4), and cannot be used for non-integer and asymmetric SR. In this paper, we propose to learn a scale-arbitrary image SR network from scale-specific networks. Specifically, we propose a plug-in module for existing SR networks to perform scale-arbitrary SR, which consists of multiple scale-aware feature adaption blocks and a scale-aware upsampling layer. Moreover, we introduce a scale-aware knowledge transfer paradigm to transfer knowledge from scale-specific networks to the scale-arbitrary network. Our plug-in module can be easily adapted to existing networks to achieve scale-arbitrary SR. These networks plugged with our module can achieve promising results for non-integer and asymmetric SR while maintaining state-of-the-art performance for SR with integer scale factors. Besides, the additional computational and memory cost of our module is very small.
Although single-image super-resolution (SISR) methods have achieved great success on single degradation, they still suffer performance drop with multiple degrading effects in real scenarios. Recently, some blind and non-blind models for multiple degradations have been explored. However, those methods usually degrade significantly for distribution shifts between the training and test data. Towards this end, we propose a conditional meta-network framework (named CMDSR) for the first time, which helps SR framework learn how to adapt to changes in input distribution. We extract degradation prior at task-level with the proposed ConditionNet, which will be used to adapt the parameters of the basic SR network (BaseNet). Specifically, the ConditionNet of our framework first learns the degradation prior from a support set, which is composed of a series of degraded image patches from the same task. Then the adaptive BaseNet rapidly shifts its parameters according to the conditional features. Moreover, in order to better extract degradation prior, we propose a task contrastive loss to decrease the inner-task distance and increase the cross-task distance between task-level features. Without predefining degradation maps, our blind framework can conduct one single parameter update to yield considerable SR results. Extensive experiments demonstrate the effectiveness of CMDSR over various blind, even non-blind methods. The flexible BaseNet structure also reveals that CMDSR can be a general framework for large series of SISR models.
Classic image scaling (e.g. bicubic) can be seen as one convolutional layer and a single upscaling filter. Its implementation is ubiquitous in all display devices and image processing software. In the last decade deep learning systems have been introduced for the task of image super-resolution (SR), using several convolutional layers and numerous filters. These methods have taken over the benchmarks of image quality for upscaling tasks. Would it be possible to replace classic upscalers with deep learning architectures on edge devices such as display panels, tablets, laptop computers, etc.? On one hand, the current trend in Edge-AI chips shows a promising future in this direction, with rapid development of hardware that can run deep-learning tasks efficiently. On the other hand, in image SR only few architectures have pushed the limit to extreme small sizes that can actually run on edge devices at real-time. We explore possible solutions to this problem with the aim to fill the gap between classic upscalers and small deep learning configurations. As a transition from classic to deep-learning upscaling we propose edge-SR (eSR), a set of one-layer architectures that use interpretable mechanisms to upscale images. Certainly, a one-layer architecture cannot reach the quality of deep learning systems. Nevertheless, we find that for high speed requirements, eSR becomes better at trading-off image quality and runtime performance. Filling the gap between classic and deep-learning architectures for image upscaling is critical for massive adoption of this technology. It is equally important to have an interpretable system that can reveal the inner strategies to solve this problem and guide us to future improvements and better understanding of larger networks.
A very deep convolutional neural network (CNN) has recently achieved great success for image super-resolution (SR) and offered hierarchical features as well. However, most deep CNN based SR models do not make full use of the hierarchical features from the original low-resolution (LR) images, thereby achieving relatively-low performance. In this paper, we propose a novel residual dense network (RDN) to address this problem in image SR. We fully exploit the hierarchical features from all the convolutional layers. Specifically, we propose residual dense block (RDB) to extract abundant local features via dense connected convolutional layers. RDB further allows direct connections from the state of preceding RDB to all the layers of current RDB, leading to a contiguous memory (CM) mechanism. Local feature fusion in RDB is then used to adaptively learn more effective features from preceding and current local features and stabilizes the training of wider network. After fully obtaining dense local features, we use global feature fusion to jointly and adaptively learn global hierarchical features in a holistic way. Extensive experiments on benchmark datasets with different degradation models show that our RDN achieves favorable performance against state-of-the-art methods.
In this paper, we present D2C-SR, a novel framework for the task of real-world image super-resolution. As an ill-posed problem, the key challenge in super-resolution related tasks is there can be multiple predictions for a given low-resolution input. Most classical deep learning based approaches ignored the fundamental fact and lack explicit modeling of the underlying high-frequency distribution which leads to blurred results. Recently, some methods of GAN-based or learning super-resolution space can generate simulated textures but do not promise the accuracy of the textures which have low quantitative performance. Rethinking both, we learn the distribution of underlying high-frequency details in a discrete form and propose a two-stage pipeline: divergence stage to convergence stage. At divergence stage, we propose a tree-based structure deep network as our divergence backbone. Divergence loss is proposed to encourage the generated results from the tree-based network to diverge into possible high-frequency representations, which is our way of discretely modeling the underlying high-frequency distribution. At convergence stage, we assign spatial weights to fuse these divergent predictions to obtain the final output with more accurate details. Our approach provides a convenient end-to-end manner to inference. We conduct evaluations on several real-world benchmarks, including a new proposed D2CRealSR dataset with x8 scaling factor. Our experiments demonstrate that D2C-SR achieves better accuracy and visual improvements against state-of-the-art methods, with a significantly less parameters number.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا