While machine learning (ML) methods have received a lot of attention in recent years, these methods are primarily for prediction. Empirical researchers conducting policy evaluations are, on the other hand, pre-occupied with causal problems, trying to answer counterfactual questions: what would have happened in the absence of a policy? Because these counterfactuals can never be directly observed (described as the fundamental problem of causal inference) prediction tools from the ML literature cannot be readily used for causal inference. In the last decade, major innovations have taken place incorporating supervised ML tools into estimators for causal parameters such as the average treatment effect (ATE). This holds the promise of attenuating model misspecification issues, and increasing of transparency in model selection. One particularly mature strand of the literature include approaches that incorporate supervised ML approaches in the estimation of the ATE of a binary treatment, under the textit{unconfoundedness} and positivity assumptions (also known as exchangeability and overlap assumptions). This article reviews popular supervised machine learning algorithms, including the Super Learner. Then, some specific uses of machine learning for treatment effect estimation are introduced and illustrated, namely (1) to create balance among treated and control groups, (2) to estimate so-called nuisance models (e.g. the propensity score, or conditional expectations of the outcome) in semi-parametric estimators that target causal parameters (e.g. targeted maximum likelihood estimation or the double ML estimator), and (3) the use of machine learning for variable selection in situations with a high number of covariates.